The Definitive Guide
to

Yi 2.0

http://www.yiiframework.com/doc/guide

Qiang Xue,
Alexander Makarov,
Carsten Brandt,
Klimov Paul,
and
many contributors from the Yii community

This tutorial is released under the Terms of Yii Documentation.

Copyright 2014 Yii Software LLC. All Rights Reserved.

http://www.yiiframework.com/doc/guide
http://www.yiiframework.com/doc/terms/

Contents

1 Introduction
1.1 WhatisYii
1.2 Upgrading from Version 1.1
2 Getting Started
2.1 What do you need to know
2.2 Imstalling Yii
2.3 Running Applications L.
24 SayingHello. o
2.5 Working with Forms
2.6 Working with Databases
2.7 Generating Code with Gii
2.8 Looking Ahead
3 Application Structure
3.1 Overview
3.2 Entry Scripts
3.3 Applications
3.4 Application Components
3.5 Controllers
3.6 Models.
3.7 Views . ..o
3.8 Modules
3.9 Filters
3.10 Widgets
3.11 Assets
3.12 Extensions
4 Handling Requests
4.1 Overview
4.2 Bootstrapping
4.3 Routing and URL Creation
44 Requests e

1l

13
13
14
23
27
30
36
42
49

51
51
52
o4
67
69
79
90
104
111
119
123
143

v

4.5
4.6
4.7
4.8

Responses
Sessions and Cookies
Handling Errors

Logging,

Key Concepts

5.1
5.2
5.3
5.4
9.5
0.6
2.7
5.8
5.9

Components
Properties
Events
Behaviors L.
Configurations
Aliases
Class Autoloading
Service Locator
Dependency Injection Container

Working with Databases

6.1
6.2
6.3
6.4

Database Access Objects
Query Builder L.
Active Record
Database Migration.

Getting Data from Users

7.1
7.2
7.3
7.4
7.5
7.6

Creating Forms
Validating Input
Uploading Files
Collecting tabular input
Getting Data for Multiple Models

Extending ActiveForm on the Client Side

Displaying Data

8.1 Data Formatting
8.2 Pagination. oL
83 Sorting
8.4 Data Providers
8.5 Datawidgets
8.6 Working with Client Scripts
87 Theming
Security

9.1 Security
9.2 Authentication
9.3 Authorization 0L
9.4 Working with Passwords

CONTENTS

CONTENTS

9.5 Cryptography
9.6 Security best practices

10 Caching
10.1 Caching
10.2 Data Caching
10.3 Fragment Caching
10.4 Page Caching
10.5 HTTP Caching

11 RESTful Web Services
11.1 Quick Start
11.2 Resources
11.3 Controllers
11.4 Routing
11.5 Response Formatting
11.6 Authentication
11.7 Rate Limiting
11.8 Versioning
11.9 Error Handling

12 Development Tools

13 Testing
13.1 Testing
13.2 Testing environment setup . . .
13.3 Unit Tests
13.4 Functional Tests
13.5 Acceptance Tests
13.6 Fixtures

14 Special Topics

14.1 Creating your own Application structure

14.2 Console applications
14.3 Core Validators
14.4 Yii and Docker
14.5 Internationalization
14.6 Mailing
14.7 Performance Tuning
14.8 Shared Hosting Environment .
14.9 Using template engines
14.10Working with Third-Party Code
14.11Using Yii as a Micro-framework

15 Widgets

438
439

449
449
449
458
462
463

467
467
472
477
481
483
487
490
491
494

497

499
499
500
501
502
502
503

511
511
512
519
536
538
554
558
963
565
566
570

575

vi CONTENTS

16 Helpers 577
16.1 Helpers 577
16.2 ArrayHelper 579
16.3 Html helper 587
16.4 Json Helper oo 595

16.5 Url Helper 596

Chapter 1

Introduction

1.1 What is Yii

Yii is a high performance, component-based PHP framework for rapidly
developing modern Web applications. The name Yii (pronounced Yee or
[ji:]1) means “simple and evolutionary” in Chinese. It can also be thought
of as an acronym for Yes It Is!

1.1.1 What is Yii Best for?

Yii is a generic Web programming framework, meaning that it can be used
for developing all kinds of Web applications using PHP. Because of its
component-based architecture and sophisticated caching support, it is es-
pecially suitable for developing large-scale applications such as portals, for-
ums, content management systems (CMS), e-commerce projects, RESTful
Web services, and so on.

1.1.2 How does Yii Compare with Other Frameworks?

If you're already familiar with another framework, you may appreciate know-
ing how Yii compares:

e Like most PHP frameworks, Yii implements the MVC (Model-View-
Controller) architectural pattern and promotes code organization based
on that pattern.

e VYii takes the philosophy that code should be written in a simple yet
elegant way. Yii will never try to over-design things mainly for the
purpose of strictly following some design pattern.

e Yii is a full-stack framework providing many proven and ready-to-
use features: query builders and ActiveRecord for both relational and
NoSQL databases; RESTful API development support; multi-tier cach-
ing support; and more.

2 CHAPTER 1. INTRODUCTION

e VYii is extremely extensible. You can customize or replace nearly every
piece of the core’s code. You can also take advantage of Yii’s solid
extension architecture to use or develop redistributable extensions.

e High performance is always a primary goal of Yii.

Yii is not a one-man show, it is backed up by a strong core developer team!,
as well as a large community of professionals constantly contributing to Yii’s
development. The Yii developer team keeps a close eye on the latest Web
development trends and on the best practices and features found in other
frameworks and projects. The most relevant best practices and features
found elsewhere are regularly incorporated into the core framework and ex-
posed via simple and elegant interfaces.

1.1.3 Yii Versions

Yii currently has two major versions available: 1.1 and 2.0. Version 1.1 is
the old generation and is now in maintenance mode. Version 2.0 is a com-
plete rewrite of Yii, adopting the latest technologies and protocols, including
Composer, PSR, namespaces, traits, and so forth. Version 2.0 represents the
current generation of the framework and will receive the main development
efforts over the next few years. This guide is mainly about version 2.0.

1.1.4 Requirements and Prerequisites

Yii 2.0 requires PHP 5.4.0 or above and runs best with the latest version of
PHP 7. You can find more detailed requirements for individual features by
running the requirement checker included in every Yii release.

Using Yii requires basic knowledge of object-oriented programming (OOP),
as Yii is a pure OOP-based framework. Yii 2.0 also makes use of the latest
features of PHP, such as namespaces® and traits®. Understanding these con-
cepts will help you more easily pick up Yii 2.0.

1.2 Upgrading from Version 1.1

There are many differences between versions 1.1 and 2.0 of Yii as the frame-
work was completely rewritten for 2.0. As a result, upgrading from version
1.1 is not as trivial as upgrading between minor versions. In this guide you’ll
find the major differences between the two versions.

If you have not used Yii 1.1 before, you can safely skip this section and
turn directly to “Getting started®.

Please note that Yii 2.0 introduces more new features than are covered
in this summary. It is highly recommended that you read through the whole

"https://www.yiiframework.com/team/
’https://www.php.net/manual/en/language . namespaces . php
3https://www.php.net/manual/en/language.oop5.traits.php

https://www.yiiframework.com/team/
https://www.php.net/manual/en/language.namespaces.php
https://www.php.net/manual/en/language.oop5.traits.php

1.2. UPGRADING FROM VERSION 1.1 3

definitive guide to learn about them all. Chances are that some features you
previously had to develop for yourself are now part of the core code.

1.2.1 Installation

Yii 2.0 fully embraces Composer?, the de facto PHP package manager. In-
stallation of the core framework, as well as extensions, are handled through
Composer. Please refer to the Installing Yii section to learn how to install
Yii 2.0. If you want to create new extensions, or turn your existing 1.1 exten-
sions into 2.0-compatible extensions, please refer to the Creating Extensions
section of the guide.

1.2.2 PHP Requirements

Yii 2.0 requires PHP 5.4 or above, which is a huge improvement over PHP
version 5.2 that is required by Yii 1.1. As a result, there are many differences
on the language level that you should pay attention to. Below is a summary
of the major changes regarding PHP:

e Namespaces®.
6

Anonymous functions®.

Short echo tags <?= are used in view files. This is safe to use starting
from PHP 5.4.

SPL classes and interfaces”.

Late Static Bindings®.

Date and Time®.

Traits'0.

intl'. Yii 2.0 makes use of the int1 PHP extension to support inter-
nationalization features.

1.2.3 Namespace

The most obvious change in Yii 2.0 is the use of namespaces. Almost every
core class is namespaced, e.g., yii\web\Request. The “C” prefix is no longer
used in class names. The naming scheme now follows the directory structure.
For example, yii\web\Request indicates that the corresponding class file is
web/Request.php under the Yii framework folder.

“https://getcomposer.org/
Shttps://www.php.net/manual/en/language . namespaces . php
Shttps://www.php.net/manual/en/functions.anonymous . php
"https://www.php.net/manual/en/book. spl.php
8https://www.php.net/manual/en/language.oop5.late-static-bindings.php
‘https://www.php.net/manual/en/book.datetime . php
https://wuw.php.net/manual/en/language.oop5.traits.php
Yhttps://www.php.net/manual/en/book.intl.php

Short array syntax [...elements...] is used instead of array(...elements...).

https://getcomposer.org/
https://www.php.net/manual/en/language.namespaces.php
https://www.php.net/manual/en/functions.anonymous.php
https://www.php.net/manual/en/book.spl.php
https://www.php.net/manual/en/language.oop5.late-static-bindings.php
https://www.php.net/manual/en/book.datetime.php
https://www.php.net/manual/en/language.oop5.traits.php
https://www.php.net/manual/en/book.intl.php

4 CHAPTER 1. INTRODUCTION

(You can use any core class without explicitly including that class file,
thanks to the Yii class loader.)

1.2.4 Component and Object

Yii 2.0 breaks the cComponent class in 1.1 into two classes: yii\base\BaseObject
and yii\base\Component. The BaseObject class is a lightweight base class
that allows defining object properties via getters and setters. The Component
class extends from BaseObject and supports events and behaviors.

If your class does not need the event or behavior feature, you should
consider using BaseObject as the base class. This is usually the case for
classes that represent basic data structures.

1.2.5 Object Configuration

The BaseObject class introduces a uniform way of configuring objects. Any
descendant class of BaseObject should declare its constructor (if needed) in
the following way so that it can be properly configured:

class MyClass extends \yii\base\BaseObject

{
public function __construct($paraml, $param2, $config = [])
{
// ... initialization before configuration is applied
parent::__construct($config);
}
public function init()
{
parent::init();
// ... initialization after configuration is applied
}
}

In the above, the last parameter of the constructor must take a configuration
array that contains name-value pairs for initializing the properties at the end
of the constructor. You can override the init () method to do initialization
work that should be done after the configuration has been applied.

By following this convention, you will be able to create and configure
new objects using a configuration array:

$object = Yii::createObject ([
'class' => 'MyClass',
'propertyl' => 'abc',
'property2' => 'cde',

], [$paraml, $param2]);

More details about configurations can be found in the Configurations section.

1.2. UPGRADING FROM VERSION 1.1 5

1.2.6 Events

In Yii 1, events were created by defining an on-method (e.g., onBeforesave).
In Yii 2, you can now use any event name. You trigger an event by calling
the trigger () method:

$event = new \yii\base\Event;
$component->trigger ($eventName, $event);

To attach a handler to an event, use the on() method:

$component->on($eventName, $handler);
// To detach the handler, use:
// $component->off($eventName, $handler);

There are many enhancements to the event features. For more details, please
refer to the Events section.

1.2.7 Path Aliases

Yii 2.0 expands the usage of path aliases to both file/directory paths and
URLs. Yii 2.0 also now requires an alias name to start with the e character,
to differentiate aliases from normal file/directory paths or URLs. For ex-
ample, the alias eyii refers to the Yii installation directory. Path aliases are
supported in most places in the Yii core code. For example, yii\caching
\FileCache: :$cachePath can take both a path alias and a normal directory
path.

A path alias is also closely related to a class namespace. It is recom-
mended that a path alias be defined for each root namespace, thereby al-
lowing you to use Yii class autoloader without any further configuration.
For example, because eyii refers to the Yii installation directory, a class like
yii\web\Request can be autoloaded. If you use a third party library, such as
the Zend Framework, you may define a path alias ezend that refers to that
framework’s installation directory. Once you’'ve done that, Yii will be able
to autoload any class in that Zend Framework library, too.

More on path aliases can be found in the Aliases section.

1.2.8 Views

The most significant change about views in Yii 2 is that the special variable
$this in a view no longer refers to the current controller or widget. Instead,
$this now refers to a view object, a new concept introduced in 2.0. The view
object is of type yii\web\View, which represents the view part of the MVC
pattern. If you want to access the controller or widget in a view, you can
use $this->context.

To render a partial view within another view, you use $this->render(),
not $this->renderPartial(). The call to render also now has to be explicitly

6 CHAPTER 1. INTRODUCTION

echoed, as the render() method returns the rendering result, rather than
directly displaying it. For example:

echo $this->render('_item', ['item' => $item]);

Besides using PHP as the primary template language, Yii 2.0 is also equipped
with official support for two popular template engines: Smarty and Twig.
The Prado template engine is no longer supported. To use these template
engines, you need to configure the view application component by setting the
View: :$renderers property. Please refer to the Template Engines section
for more details.

1.2.9 Models

Yii 2.0 uses yii\base\Model as the base model, similar to CModel in 1.1.
The class CFormModel has been dropped entirely. Instead, in Yii 2 you should
extend yii\base\Model to create a form model class.

Yii 2.0 introduces a new method called scenarios () to declare supported
scenarios, and to indicate under which scenario an attribute needs to be
validated, can be considered as safe or not, etc. For example:

public function scenarios()

{
return [
'backend' => ['email', 'role'],
'frontend' => ['email', '!role'],
1;
}

In the above, two scenarios are declared: backend and frontend. For the
backend scenario, both the email and role attributes are safe, and can be
massively assigned. For the frontend scenario, email can be massively assigned
while role cannot. Both email and role should be validated using rules.

The rules() method is still used to declare the validation rules. Note
that due to the introduction of scenarios(), there is no longer an unsafe
validator.

In most cases, you do not need to override scenarios() if the rules()
method fully specifies the scenarios that will exist, and if there is no need to
declare unsafe attributes.

To learn more details about models, please refer to the Models section.

1.2.10 Controllers

Yii 2.0 uses yii\web\Controller as the base controller class, which is similar
to CController in Yii 1.1. yii\base\Action is the base class for action classes.

The most obvious impact of these changes on your code is that a con-
troller action should return the content that you want to render instead of
echoing it:

1.2. UPGRADING FROM VERSION 1.1 7

public function actionView($id)

{
$model = \app\models\Post::findOne($id);
if ($model) {
return $this->render('view', ['model' => $modell]);
} else {
throw new \yii\web\NotFoundHttpException;
}
}

Please refer to the Controllers section for more details about controllers.

1.2.11 Widgets

Yii 2.0 uses yii\base\Widget as the base widget class, similar to CWidget in
Yii 1.1.

To get better support for the framework in IDEs, Yii 2.0 introduces a new
syntax for using widgets. The static methods begin(), end(), and widget ()
have been introduced, to be used like so:

use yii\widgets\Menu;
use yii\widgets\ActiveForm;

// Note that you have to "echo" the result to display it
echo Menu::widget(['items' => $items]);

// Passing an array to initialize the object properties
$form = ActiveForm::begin([
'options' => ['class' => 'form-horizontal'],
'fieldConfig' => ['inputOptions' => ['class' => 'input-xlarge'l],
IDR
. form input fields here ...
ActiveForm: :end();

Please refer to the Widgets section for more details.

1.2.12 Themes

Themes work completely differently in 2.0. They are now based on a path
mapping mechanism that maps a source view file path to a themed view
file path. For example, if the path map for a theme is ['/web/vieus' =>
' /web/themes/basic'], then the themed version for the view file /web/views/site/index.php
will be /web/themes/basic/site/index.php. For this reason, themes can now be
applied to any view file, even a view rendered outside of the context of a
controller or a widget.
Also, there is no more CThemeManager component. Instead, theme is a con-
figurable property of the view application component.
Please refer to the Theming section for more details.

8 CHAPTER 1. INTRODUCTION

1.2.13 Console Applications

Console applications are now organized as controllers, like Web applications.
Console controllers should extend from yii\console\Controller, similar
to CConsoleCommand in 1.1.

To run a console command, use yii <route>, where <route> stands for a
controller route (e.g. sitemap/index). Additional anonymous arguments are
passed as the parameters to the corresponding controller action method,
while named arguments are parsed according to the declarations in yii
\console\Controller: :options().

Yii 2.0 supports automatic generation of command help information from
comment blocks.

Please refer to the Console Commands section for more details.

1.2.14 TI18N

Yii 2.0 removes the built-in date formatter and number formatter pieces in
favor of the PECL intl PHP module'2.

Message translation is now performed via the ii8n application compon-
ent. This component manages a set of message sources, which allows you to
use different message sources based on message categories.

Please refer to the Internationalization section for more details.

1.2.15 Action Filters

Action filters are implemented via behaviors now. To define a new, custom
filter, extend from yii\base\ActionFilter. To use a filter, attach the filter
class to the controller as a behavior. For example, to use the yii\filters
\AccessControl filter, you would have the following code in a controller:

public function behaviors()

{
return [
'access' => [
'class' => 'yii\filters\AccessControl',
'rules' => [
['allow' => true, 'actions' => ['admin'], 'roles' => ['@']],
1,
1,
1;
}

Please refer to the Filtering section for more details.

2https://pecl.php.net/package/intl

https://pecl.php.net/package/intl

1.2. UPGRADING FROM VERSION 1.1 9

1.2.16 Assets

Yii 2.0 introduces a new concept called asset bundle that replaces the script
package concept found in Yii 1.1.

An asset bundle is a collection of asset files (e.g. JavaScript files, CSS
files, image files, etc.) within a directory. Each asset bundle is represented
as a class extending yii\web\AssetBundle. By registering an asset bundle
via yii\web\AssetBundle: :register (), you make the assets in that bundle
accessible via the Web. Unlike in Yii 1, the page registering the bundle will
automatically contain the references to the JavaScript and CSS files specified
in that bundle.

Please refer to the Managing Assets section for more details.

1.2.17 Helpers

Yii 2.0 introduces many commonly used static helper classes, including.
yii\helpers\Html

yii\helpers\ArrayHelper

yii\helpers\StringHelper

e yii\helpers\FileHelper

e yii\helpers\Json

Please refer to the Helper Overview section for more details.

1.2.18 Forms

Yii 2.0 introduces the field concept for building a form using yii\widgets
\ActiveForm. A field is a container consisting of a label, an input, an error
message, and /or a hint text. A field is represented as an ActiveField object.
Using fields, you can build a form more cleanly than before:

<?php $form = yii\widgets\ActiveForm::begin(); 2>
<?= $form->field($model, 'username') ?>
<?= $form->field($model, 'password')->passwordInput() 2>
<div class="form-group">
<?= Html::submitButton('Login') 2>
</div>
<?php yii\widgets\ActiveForm::end(); ?>

Please refer to the Creating Forms section for more details.

1.2.19 Query Builder

In 1.1, query building was scattered among several classes, including cDbCommand,
CDbCriteria, and CDbCommandBuilder. Yii 2.0 represents a DB query in terms
of a Query object that can be turned into a SQL statement with the help of
QueryBuilder behind the scene. For example:

10 CHAPTER 1. INTRODUCTION

$query = new \yii\db\QueryQO;
$query->select('id, name')
->from('user"')
->1imit (10);

$command = $query->createCommand() ;
$sql = $command->sql;
$rows = $command->queryAll();

Best of all, such query building methods can also be used when working with
Active Record.
Please refer to the Query Builder section for more details.

1.2.20 Active Record

Yii 2.0 introduces a lot of changes to Active Record. The two most obvious
ones involve query building and relational query handling.

The cDbCriteria class in 1.1 is replaced by yii\db\ActiveQuery in Yii 2.
That class extends from yii\db\Query, and thus inherits all query building
methods. You call yii\db\ActiveRecord: :find() to start building a query:

// To retrieve all *active* customers and order them by their ID:
$customers = Customer::find()

->where(['status' => $activel)

->orderBy('id')

->all();

To declare a relation, simply define a getter method that returns an ActiveQuery
object. The property name defined by the getter represents the relation
name. For example, the following code declares an orders relation (in 1.1,
you would have to declare relations in a central place relations()):

class Customer extends \yii\db\ActiveRecord

{
public function getOrders()
{
return $this->hasMany('Order', ['customer_id' => 'id']l);
}
}

Now you can use $customer->orders to access a customer’s orders from the
related table. You can also use the following code to perform an on-the-fly
relational query with a customized query condition:

$orders = $customer->getOrders()->andWhere('status=1')->all();

When eager loading a relation, Yii 2.0 does it differently from 1.1. In partic-
ular; in 1.1 a JOIN query would be created to select both the primary and
the relational records. In Yii 2.0, two SQL statements are executed without

1.2. UPGRADING FROM VERSION 1.1 11

using JOIN: the first statement brings back the primary records and the
second brings back the relational records by filtering with the primary keys
of the primary records.

Instead of returning ActiveRecord objects, you may chain the asArray ()
method when building a query to return a large number of records. This will
cause the query result to be returned as arrays, which can significantly reduce
the needed CPU time and memory if large number of records . For example:

$customers = Customer::find()->asArray()->all();

Another change is that you can’t define attribute default values through
public properties anymore. If you need those, you should set them in the
init method of your record class.

public function init()
{

parent::init();

$this->status = self::STATUS_NEW;
}

There were some problems with overriding the constructor of an ActiveRecord
class in 1.1. These are not present in version 2.0 anymore. Note that when
adding parameters to the constructor you might have to override yii\db
\ActiveRecord: :instantiate().

There are many other changes and enhancements to Active Record.
Please refer to the Active Record section for more details.

1.2.21 Active Record Behaviors

In 2.0, we have dropped the base behavior class CActiveRecordBehavior. If you
want to create an Active Record Behavior, you will have to extend directly
from yii\base\Behavior. If the behavior class needs to respond to some events
of the owner, you have to override the events() method like the following:

namespace app\components;

use yii\db\ActiveRecord;
use yii\base\Behavior;

class MyBehavior extends Behavior
{
/o

public function events()
{
return [
ActiveRecord: :EVENT_BEFORE_VALIDATE => 'beforeValidate',
1;

12 CHAPTER 1. INTRODUCTION

public function beforeValidate($event)
{

/.
}

1.2.22 User and IdentityInterface

The cwebUser class in 1.1 is now replaced by yiil\web\User, and there is
no more CUserIdentity class. Instead, you should implement the yii\web
\IdentityInterface which is much more straightforward to use. The ad-
vanced project template provides such an example.

Please refer to the Authentication, Authorization, and Advanced Project
Template!? sections for more details.

1.2.23 URL Management

URL management in Yii 2 is similar to that in 1.1. A major enhancement
is that URL management now supports optional parameters. For example,
if you have a rule declared as follows, then it will match both post/popular
and post/1/popular. In 1.1, you would have had to use two rules to achieve
the same goal.

[
'pattern' => 'post/<page:\d+>/<tag>',
'route' => 'post/index’,
'defaults' => ['page' => 1],

]

Please refer to the Url manager docs section for more details.

An important change in the naming convention for routes is that camel
case names of controllers and actions are now converted to lower case where
each word is separated by a hypen, e.g. the controller id for the CamelCaseController
will be camel-case. See the section about controller IDs and action IDs for
more details.

1.2.24 Using Yii 1.1 and 2.x together

If you have legacy Yii 1.1 code that you want to use together with Yii 2.0,
please refer to the Using Yii 1.1 and 2.0 Together section.

Bhttps://www.yiiframework.com/extension/yiisoft/yii2-app-advanced/doc/
guide

https://www.yiiframework.com/extension/yiisoft/yii2-app-advanced/doc/guide
https://www.yiiframework.com/extension/yiisoft/yii2-app-advanced/doc/guide

Chapter 2

Getting Started

2.1 What do you need to know

The Yii learning curve is not as steep as other PHP frameworks but still
there are some things you should learn before starting with Yii.

2.1.1 PHP

Yii is a PHP framework so make sure you read and understand language
reference!. When developing with Yii you will be writing code in an object
oriented fashion, so make sure you are familiar with Classes and Objects? as

well as namespaces®.

2.1.2 Object oriented programming

Basic understanding of object oriented programming is required. If you're
not familiar with it, check one of the many tutorials available such as the
one from tuts+2.

Note that the more complicated your application is the more advanced
OOP concepts you should learn in order to successfully manage that com-
plexity.

2.1.3 Command line and composer

Yii extensively uses de-facto standard PHP package manager, Composer®

make sure you read and understand its guide®. If you are not familiar with

SO

"https://www.php.net/manual/en/langref . php

*https://www.php.net/manual/en/language .oop5.basic.php
3https://www.php.net/manual/en/language . namespaces . php
‘https://code.tutsplus.com/tutorials/object-oriented-php-for-beginners--net-12762
https://getcomposer.org/

Shttps://getcomposer.org/doc/01-basic-usage.md

13

https://www.php.net/manual/en/langref.php
https://www.php.net/manual/en/language.oop5.basic.php
https://www.php.net/manual/en/language.namespaces.php
https://code.tutsplus.com/tutorials/object-oriented-php-for-beginners--net-12762
https://getcomposer.org/
https://getcomposer.org/doc/01-basic-usage.md

14 CHAPTER 2. GETTING STARTED

using command line it is time to start trying. Once you learn the basics
you’ll never want to work without it.

2.2 Installing Yii

You can install Yii in two ways, using the Composer” package manager or by
downloading an archive file. The former is the preferred way, as it allows you
to install new extensions or update Yii by simply running a single command.

Standard installations of Yii result in both the framework and a project
template being downloaded and installed. A project template is a working
Yii project implementing some basic features, such as login, contact form,
etc. Its code is organized in a recommended way. Therefore, it can serve as
a good starting point for your projects.

In this and the next few sections, we will describe how to install Yii with
the so-called Basic Project Template and how to implement new features on
top of this template. Yii also provides another template called the Advanced
Project Template® which is better used in a team development environment
to develop applications with multiple tiers.

Info: The Basic Project Template is suitable for developing 90
percent of Web applications. It differs from the Advanced Project
Template mainly in how their code is organized. If you are new
to Yii, we strongly recommend you stick to the Basic Project
Template for its simplicity yet sufficient functionalities.

2.2.1 Installing via Composer
Installing Composer

If you do not already have Composer installed, you may do so by following
the instructions at getcomposer.org”. On Linux and Mac OS X, you’ll run
the following commands:

curl -sS https://getcomposer.org/installer | php
sudo mv composer.phar /usr/local/bin/composer

On Windows, you'll download and run Composer-Setup.exe'?.
Please refer to the Troubleshooting section of the Composer Document-
ation!! if you encounter any problems. If you are new to Composer, we

"https://getcomposer.org/

8https://www.yiiframework.com/extension/yiisoft/yii2-app-advanced/doc/
guide

https://getcomposer.org/download/

https://getcomposer.org/Composer-Setup. exe

Uhttps://getcomposer.org/doc/articles/troubleshooting.md

https://getcomposer.org/
https://www.yiiframework.com/extension/yiisoft/yii2-app-advanced/doc/guide
https://www.yiiframework.com/extension/yiisoft/yii2-app-advanced/doc/guide
https://getcomposer.org/download/
https://getcomposer.org/Composer-Setup.exe
https://getcomposer.org/doc/articles/troubleshooting.md

2.2. INSTALLING YII 15

also recommend to read at least the Basic usage section'? of the Composer
documentation.

In this guide all composer commands assume you have installed composer
globally'? so that it is available as the composer command. If you are using the
composer.phar in the local directory instead, you have to adjust the example
commands accordingly.

If you had Composer already installed before, make sure you use an up
to date version. You can update Composer by running composer self-update.

Note: During the installation of Yii, Composer will need to re-
quest a lot of information from the Github API. The number of
requests depends on the number of dependencies your applica-
tion has and may be bigger than the Github API rate limit.
If you hit this limit, Composer may ask for your Github login
credentials to obtain a Github API access token. On fast con-
nections you may hit this limit earlier than Composer can handle
so we recommend to configure the access token before installing
Yii. Please refer to the Composer documentation about Github
API tokens!? for instructions on how to do this.

Installing Yii

With Composer installed, you can install Yii application template by running
the following command under a Web-accessible folder:

composer create-project --prefer-dist yiisoft/yii2-app-basic basic

This will install the latest stable version of Yii application template in a
directory named basic. You can choose a different directory name if you
want.

Info: If the composer create-project command fails you,nlay’also
refer to the Troubleshooting section of the Composer Document-
ation'® for common errors. When you have fixed the error, you
can resume the aborted installation by running composer update
inside of the vasic directory.

Tip: If you want to install the latest development version of
Yii, you may use the following command instead, which adds a
stability option'®:

2https://getcomposer.org/doc/01-basic-usage.md
3https://getcomposer.org/doc/00-intro.md#globally
Yhttps://getcomposer.org/doc/articles/troubleshooting . md#
api-rate-limit-and-oauth-tokens
https://getcomposer.org/doc/articles/troubleshooting.md
https://getcomposer.org/doc/04-schema. md#minimum-stability

https://getcomposer.org/doc/01-basic-usage.md
https://getcomposer.org/doc/00-intro.md#globally
https://getcomposer.org/doc/articles/troubleshooting.md#api-rate-limit-and-oauth-tokens
https://getcomposer.org/doc/articles/troubleshooting.md#api-rate-limit-and-oauth-tokens
https://getcomposer.org/doc/articles/troubleshooting.md
https://getcomposer.org/doc/04-schema.md#minimum-stability

16 CHAPTER 2. GETTING STARTED

composer create-project --prefer-dist --stability=dev
yiisoft/yii2-app-basic basic

Note that the development version of Yii should not be used for
production as it may break your running code.

2.2.2 Installing from an Archive File

Installing Yii from an archive file involves three steps:

1. Download the archive file from yiiframework.com!”.

2. Unpack the downloaded file to a Web-accessible folder.

3. Modify the config/web.php file by entering a secret key for the cookievalidationKey
configuration item (this is done automatically if you are installing Yii
using Composer):

// ! dinsert a secret key in the following (if it is empty) - this is
required by cookie wvalidation
'cookieValidationKey' => 'enter your secret key here',

2.2.3 Other Installation Options

The above installation instructions show how to install Yii, which also creates
a basic Web application that works out of the box. This approach is a good
starting point for most projects, either small or big. It is especially suitable
if you just start learning Yii.

But there are other installation options available:

e If you only want to install the core framework and would like to build
an entire application from scratch, you may follow the instructions as
explained in Building Application from Scratch.

e If you want to start with a more sophisticated application, better suited
to team development environments, you may consider installing the
Advanced Project Template!®.

2.2.4 Installing Assets

Yii relies on Bower!? and/or NPM?° packages for the asset (CSS and JavaS-
cript) libraries installation. It uses Composer to obtain these libraries, allow-
ing PHP and CSS/JavaScript package versions to resolve at the same time.

Yhttps://www.yiiframework.com/download/

Bhttps://github.com/yiisoft/yii2-app-advanced/blob/master/docs/guide/
README . md

Yhttps://bower.io/

Onttps://www.npmjs.com/

https://www.yiiframework.com/download/
https://github.com/yiisoft/yii2-app-advanced/blob/master/docs/guide/README.md
https://github.com/yiisoft/yii2-app-advanced/blob/master/docs/guide/README.md
https://bower.io/
https://www.npmjs.com/

2.2. INSTALLING YII 17

This can be achieved either by usage of asset-packagist.org?! or composer
asset plugin??. Please refer to Assets documentation for more details.

You may want to either manage your assets via native Bower /NPM client,
use CDN or avoid assets installation entirely. In order to prevent assets
installation via Composer, add the following lines to your ‘composer.json’:

"replace”B {
"bower-asset/jquery": ">=1.11.0",
"bower-asset/inputmask": ">=3.2.0",
"bower-asset/punycode": ">=1.3.0",

"bower-asset/yii2-pjax": ">=2.0.0"

¥

Note: in case of bypassing asset installation via Composer, you
are responsible for the assets installation and resolving version
collisions. Be prepared for possible inconsistencies among asset
files from different extensions.

2.2.5 Verifying the Installation

After installation is done, either configure your web server (see next sec-
tion) or use the built-in PHP web server?? by running the following console
command while in the project root directory:

php yii serve

Note: By default the HT'TP-server will listen to port 8080. How-
ever if that port is already in use or you wish to serve multiple
applications this way, you might want to specify what port to
use. Just add the —port argument:

php yii serve --port=8888

You can use your browser to access the installed Yii application with the
following URL:

http://localhost:8080/

2nttps://asset-packagist.org
nttps://github. com/fxpio/composer-asset-plugin
Zhttps://www.php.net/manual/en/features.commandline.webserver.php

https://asset-packagist.org
https://github.com/fxpio/composer-asset-plugin
https://www.php.net/manual/en/features.commandline.webserver.php

18 CHAPTER 2. GETTING STARTED

Congratulations!

You have successfully created your Yii-powered application.

Lorem ipsum dolor sit amet, consectetur adipisicing elit, Lorem ipsum dolor sit amet, consectetur adipisicing elit, Lorem ipsum dolor sit amet, consectetur adipisicing elit,
sed do eiusmod tempor incididunt ut labore et dolore sed do eiusmod tempor incididunt ut labore et dolore sed do eiusmod tempor incididunt ut labore et dolore
magna aligua. Ut enim ad minim veniam, quis nostrud magna aliqua. Ut enim ad minim veniam, quis nostrud magna aligua. Ut enim ad minim veniam, quis nostrud
exercitation ullamco laboris nisi ut aliquip ex ea exercitation ullameo laboris nisi ut aliquip ex ea exercitation ullamco laboris nisi ut aliquip ex ea
commodo consequat. Duis aute irure dolor in commodo consequat. Duis aute irure dolor in commodo consequat. Duis aute irure dolor in
reprehenderit in voluptate velit esse cillum dolore eu reprehenderit in voluptate velit esse cillum dolore eu reprehenderit in voluptate velit esse cillum dolore eu
fugiat nulla pariatur. fugiat nulla pariatur. fugiat nulla pariatur.

Yii Documentation » Yii Forum » i Extensions »
© My Company 2014 Powered by Yii Frame w

You should see the above “Congratulations!“ page in your browser. If
not, please check if your PHP installation satisfies Yii’s requirements. You
can check if the minimum requirements are met using one of the following
approaches:

e Copy /requirements.php t0O /web/requirements.php and then use a browser

to access it via http://localhost/requirements.php

e Run the following commands:

cd basic

php requirements.php
You should configure your PHP installation so that it meets the minimum
requirements of Yii. Most importantly, you should have PHP 5.4 or above.
Ideally latest PHP 7. You should also install the PDO PHP Extension?* and
a corresponding database driver (such as pdo_mysql for MySQL databases),
if your application needs a database.

2.2.6 Configuring Web Servers

Info: You may skip this subsection for now if you are just test
driving Yii with no intention of deploying it to a production
server.

The application installed according to the above instructions should work out
of box with either an Apache HTTP server?® or an Nginx HTTP server?6,

Znttps://wuw.php.net/manual/en/pdo.installation.php
®https://httpd.apache.org/
Znttps://nginx.org/

https://www.php.net/manual/en/pdo.installation.php
https://httpd.apache.org/
https://nginx.org/

2.2. INSTALLING YII 19

on Windows, Mac OS X, or Linux running PHP 5.4 or higher. Yii 2.0 is also
compatible with facebook’s HHVM?". However, there are some edge cases
where HHVM behaves different than native PHP, so you have to take some
extra care when using HHVM.

On a production server, you may want to configure your Web server so
that the application can be accessed via the URL http://www.example.com/index.php
instead of http://www.example.com/basic/web/index.php. Such configuration re-
quires pointing the document root of your Web server to the basic/web folder.
You may also want to hide index.php from the URL, as described in the
Routing and URL Creation section. In this subsection, you'll learn how to
configure your Apache or Nginx server to achieve these goals.

Info: By setting basic/web as the document root, you also pre-
vent end users from accessing your private application code and
sensitive data files that are stored in the sibling directories of
basic/web. Denying access to those other folders is a security
improvement.

Info: If your application will run in a shared hosting envir-
onment where you do not have permission to modify its Web
server configuration, you may still adjust the structure of your
application for better security. Please refer to the Shared Hosting
Environment section for more details.

Info: If you are running your Yii application behind a reverse
proxy, you might need to configure Trusted proxies and headers
in the request component.

Recommended Apache Configuration

Use the following configuration in Apache’s nttpd.conf file or within a virtual
host configuration. Note that you should replace path/to/basic/web with the
actual path for basic/web.

Set document root to be "basic/web"
DocumentRoot "path/to/basic/web"

<Directory "path/to/basic/web">
use mod_rewrite for pretty URL support
RewriteEngine on

i1f $showScriptName is false in UrlManager, do not allow accessing URLs
with script name
RewriteRule ~index.php/ - [L,R=404]

™https://hhvm. com/

https://hhvm.com/

20 CHAPTER 2. GETTING STARTED

If a directory or a file exists, use the request directly
RewriteCond %{REQUEST_FILENAME} !-f
RewriteCond %{REQUEST_FILENAME} !-d

Otherwise forward the request to index.php
RewriteRule . index.php

...other settings...
</Directory>

Recommended Nginx Configuration

To use Nginx?®, you should install PHP as an FPM SAPI?’. You may use
the following Nginx configuration, replacing path/to/basic/web with the actual
path for basic/web and mysite.test with the actual hostname to serve.

server {
charset utf-8;
client_max_body_size 128M;

listen 80; ## listen for ipv4
#listen [::]:80 default_server ipuvbonly=on; ## listen for ipuvé

server_name mysite.test;
root /path/to/basic/web;
index index.php;

access_log /path/to/basic/log/access.log;
error_log /path/to/basic/log/error.log;

location / {
Redirect everything that isn't a real file to index.php
try_files $uri $uri/ /index.php$is_args$args;

}

uncomment to avoid processing of calls to nmon-existing static files by
Yie

#location ~ \.(jslcsslpngljpglgiflswflicolpdf/mov/flalzip/rar)$ {

try_files $uri =404;

#}

#error_page 404 /404.html;

deny accessing php files for the /assets directory
location ~ ~/assets/.*\.php$ {

deny all;
X

location ~ \.php$ {
include fastcgi_params;
fastcgi_param SCRIPT_FILENAME $document_root$fastcgi_script_name;

Znttps://wiki.nginx.org/
Pnttps://www.php.net/install.fpm

https://wiki.nginx.org/
https://www.php.net/install.fpm

2.2. INSTALLING YII 21

fastcgi_pass 127.0.0.1:9000;
#fastcgi_pass uniz:/var/run/php5-fpm.sock;
try_files $uri =404;

}

location ~* /\. {
deny all;
}

When using this configuration, you should also set cgi.fix_pathinfo=0 in the
php.ini file in order to avoid many unnecessary system stat() calls.

Also note that when running an HT'TPS server, you need to add fastcgi_param
HTTPS on; so that Yii can properly detect if a connection is secure.

Recommended NGINX Unit Configuration

You can run Yii-based apps using NGINX Unit? with a PHP language
module. Here is a sample configuration.

{
"listeners": {
"x:80": {
"pass": "routes/yii"
¥
},
"routes": {
nyiit: [
{
"match": {
"uri": [
"1 /assets/*",
"*.php",
" php/*ll
]
},
"action": {
"pass": "applications/yii/direct"
}
},
{
"action": {
"share": "/path/to/app/web/",
"fallback": {
"pass": "applications/yii/index"
}
}
}

3%https://unit.nginx.org/

https://unit.nginx.org/

22 CHAPTER 2. GETTING STARTED

]
},
"applications": {
nyiit: {
"type": "php",
"user": "www-data",
"targets": {
"direct": {
"root": "/path/to/app/web/"
},
"index": {
"root": "/path/to/app/web/",
"script": "index.php"
}
}
}

You can also set up3! your PHP environment or supply a custom php.ini in
the same configuration.

1IS Configuration

It’s recommended to host the application in a virtual host (Web site) where
document root points to path/to/app/web folder and that Web site is con-
figured to run PHP. In that web folder you have to place a file named
web.config i.e. path/to/app/web/web.config. Content of the file should be the
following:

<?xml version="1.0" encoding="UTF-8"?>
<configuration>

<system.webServer>

<directoryBrowse enabled="false" />

<rewrite>
<rules>
<rule name="Hide Yii Index" stopProcessing="true">
<match url="." ignoreCase="false" />
<conditions>

<add input="{REQUEST_FILENAME}" matchType="IsFile"
ignoreCase="false" negate="true" />
<add input="{REQUEST_FILENAME}" matchType="IsDirectory"
ignoreCase="false" negate="true" />
</conditions>
<action type="Rewrite" url="index.php" appendQueryString="true" />
</rule>
</rules>
</rewrite>

3https://unit.nginx.org/configuration/#php

https://unit.nginx.org/configuration/#php

2.3. RUNNING APPLICATIONS 23

</system.webServer>
</configuration>

Also the following list of Microsoft’s official resources could be useful in order
to configure PHP on IIS:

1. How to set up your first IIS Web site3?

2. Configure a PHP Website on 11533

2.3 Running Applications

After installing Yii, you have a working Yii application that can be accessed
via the URL http://hostname/basic/web/index.php OF http://hostname/index.php,
depending upon your configuration. This section will introduce the applica-
tion’s built-in functionality, how the code is organized, and how the applic-
ation handles requests in general.

Info: For simplicity, throughout this “Getting Started” tutorial,
it’s assumed that you have set basic/web as the document root
of your Web server, and configured the URL for accessing your
application to be http://hostname/index.php or something similar.
For your needs, please adjust the URLs in our descriptions ac-
cordingly.

Note that unlike framework itself, after project template is installed it’s all
yours. You're free to add or delete code and overall modify it as you need.

2.3.1 Functionality

The basic application installed contains four pages:

e the homepage, displayed when you access the URL http://hostname/index. php,

e the “About” page,

e the “Contact” page, which displays a contact form that allows end users
to contact you via email,

e and the “Login” page, which displays a login form that can be used to
authenticate end users. Try logging in with “admin/admin”, and you
will find the “Login” main menu item will change to “Logout”.

32https://docs.microsoft.com/en-us/iis/manage/creating-websites/
scenario-build-a-static-website-on-iis

33https://docs.microsoft.com/en-us/iis/application-frameworks/
scenario-build-a-php-website-on-iis/configure-a-php-website-on-iis

https://docs.microsoft.com/en-us/iis/manage/creating-websites/scenario-build-a-static-website-on-iis
https://docs.microsoft.com/en-us/iis/manage/creating-websites/scenario-build-a-static-website-on-iis
https://docs.microsoft.com/en-us/iis/application-frameworks/scenario-build-a-php-website-on-iis/configure-a-php-website-on-iis
https://docs.microsoft.com/en-us/iis/application-frameworks/scenario-build-a-php-website-on-iis/configure-a-php-website-on-iis

24 CHAPTER 2. GETTING STARTED

These pages share a common header and footer. The header contains a main
menu bar to allow navigation among different pages.

You should also see a toolbar at the bottom of the browser window.
This is a useful debugger tool?* provided by Yii to record and display a
lot of debugging information, such as log messages, response statuses, the
database queries run, and so on.

Additionally to the web application, there is a console script called yii,
which is located in the applications base directory. This script can be used
to run background and maintenance tasks for the application, which are
described in the Console Application Section.

2.3.2 Application Structure

The most important directories and files in your application are (assuming
the application’s root directory is basic):

basic/ application base path

composer. json used by Composer, describes package information

config/ contains application and other configurations
console.php the console application configuration
web.php the Web application configuration

commands/ contains console command classes

controllers/ contains controller classes

models/ contains model classes

runtime/ contains files generated by Yii during runtime, such

as logs and cache files

vendor/ contains the installed Composer packages, including

the Yii framework itself

views/ contains view files

web/ application Web root, contains Web accessible files
assets/ contains published asset files (javascript and css)
by Yii
index.php the entry (or bootstrap) script for the application

yii the Yii console command execution script

In general, the files in the application can be divided into two types: those
under basic/web and those under other directories. The former can be directly
accessed via HTTP (i.e., in a browser), while the latter can not and should
not be.

Yii implements the model-view-controller (MVC)3? architectural pattern,
which is reflected in the above directory organization. The models directory
contains all model classes, the views directory contains all view scripts, and
the controllers directory contains all controller classes.

The following diagram shows the static structure of an application.

34https://github. com/yiisoft/yii2-debug/blob/master/docs/guide/README . md
3https://wikipedia.org/wiki/Model-view-controller

https://github.com/yiisoft/yii2-debug/blob/master/docs/guide/README.md
https://wikipedia.org/wiki/Model-view-controller

2.3. RUNNING APPLICATIONS 25

entry script

application
component

filter

Each application has an entry script web/index.php which is the only Web
accessible PHP script in the application. The entry script takes an incoming
request and creates an application instance to handle it. The application
resolves the request with the help of its components, and dispatches the
request to the MVC elements. Widgets are used in the views to help build
complex and dynamic user interface elements.

2.3.3 Request Lifecycle

The following diagram shows how an application handles a request.

26

user

10.

11.

CHAPTER 2. GETTING STARTED

entry script application

@ load app config resolve route €—— 33— request component
->

Ad
run application 22— create controller
4

A
controller

create action

5

1 database
[} perform filters
(|
w

7
¥

load model B— model

|

Y 14

response component <€ 10 render view g — view

|

. A user makes a request to the entry script web/index.php.

The entry script loads the application configuration and creates an
application instance to handle the request.

The application resolves the requested route with the help of the re-
quest application component.

The application creates a controller instance to handle the request.

The controller creates an action instance and performs the filters for
the action.

If any filter fails, the action is cancelled.

If all filters pass, the action is executed.

The action loads some data models, possibly from a database.

The action renders a view, providing it with the data models.

The rendered result is returned to the response application component.

The response component sends the rendered result to the user’s browser.

2.4. SAYING HELLO 27

2.4 Saying Hello

This section describes how to create a new “Hello” page in your application.
To achieve this goal, you will create an action and a view:
e The application will dispatch the page request to the action
e and the action will in turn render the view that shows the word “Hello”
to the end user.
Through this tutorial, you will learn three things:

1. how to create an action to respond to requests,
2. how to create a view to compose the response’s content, and

3. how an application dispatches requests to actions.

2.4.1 Creating an Action

For the “Hello” task, you will create a say action that reads a message para-
meter from the request and displays that message back to the user. If the
request does not provide a message parameter, the action will display the
default “Hello” message.

Info: Actions are the objects that end users can directly refer to
for execution. Actions are grouped by controllers. The execution
result of an action is the response that an end user will receive.

Actions must be declared in controllers. For simplicity, you may declare the
say action in the existing SiteController. This controller is defined in the
class file controllers/SiteController.php. Here is the start of the new action:

<7php
namespace app\controllers;
use yii\web\Controller;

class SiteController extends Controller

{
// ...existing code...
public function actionSay($message = 'Hello')
{
return $this->render('say', ['message' => $messagel);
}
}

In the above code, the say action is defined as a method named actionSay
in the siteController class. Yii uses the prefix action to differentiate action

28 CHAPTER 2. GETTING STARTED

methods from non-action methods in a controller class. The name after the
action prefix maps to the action’s ID.

When it comes to naming your actions, you should understand how Yii
treats action IDs. Action IDs are always referenced in lower case. If an
action ID requires multiple words, they will be concatenated by dashes (e.g.,
create-comment). Action method IDs are mapped to action names by re-
moving any dashes from the IDs, capitalizing the first letter in each word,
and prefixing the resulting string with action. For example, the action ID
create-comment corresponds to the action method name actionCreateComment.

The action method in our example takes a parameter $message, whose
value defaults to "Hello" (in exactly the same way you set a default value for
any function or method argument in PHP). When the application receives a
request and determines that the say action is responsible for handling said
request, the application will populate this parameter with the same named
parameter found in the request. In other words, if the request includes a
message parameter with a value of "Goodbye", the $message variable within the
action will be assigned that value.

Within the action method, render () is called to render a view file named
say. The message parameter is also passed to the view so that it can be used
there. The rendering result is returned by the action method. That result
will be received by the application and displayed to the end user in the
browser (as part of a complete HTML page).

2.4.2 Creating a View

Views are scripts you write to generate a response’s content. For the “Hello”
task, you will create a say view that prints the message parameter received
from the action method:

<7php

use yii\helpers\Html;

2>

<?= Html::encode($message) ?>

The say view should be saved in the file views/site/say.php. When the
method render () is called in an action, it will look for a PHP file named as
views/ControllerID/ViewName.php.

Note that in the above code, the message parameter is HTML-encoded
before being printed. This is necessary as the parameter comes from an
end user, making it vulnerable to cross-site scripting (XSS) attacks® by
embedding malicious JavaScript code in the parameter.

Naturally, you may put more content in the say view. The content can
consist of HTML tags, plain text, and even PHP statements. In fact, the
say view is just a PHP script that is executed by the render () method. The

36nttps://en.wikipedia.org/wiki/Cross-site_scripting

https://en.wikipedia.org/wiki/Cross-site_scripting

2.4. SAYING HELLO 29

content printed by the view script will be returned to the application as the
response’s result. The application will in turn output this result to the end
user.

2.4.3 Trying it Out

After creating the action and the view, you may access the new page by
accessing the following URL:

http://hostname/index.php?r=site’,2Fsay&message=Hello+World

My Gompany Home About Contact Login

Hello World

© My Company 2014 Powered by Yii Frame w
’

This URL will result in a page displaying “Hello World”. The page shares
the same header and footer as the other application pages.

If you omit the message parameter in the URL, you would see the page
display just “Hello”. This is because message is passed as a parameter to the
actionSay () method, and when it is omitted, the default value of "Hel1lo" will
be used instead.

Info: The new page shares the same header and footer as other
pages because the render() method will automatically embed
the result of the say view in a so-called layout which in this case
is located at views/layouts/main.php.

The r parameter in the above URL requires more explanation. It stands for
route, an application wide unique ID that refers to an action. The route’s
format is ControllerID/ActionID. When the application receives a request, it
will check this parameter, using the ControllerID part to determine which

30 CHAPTER 2. GETTING STARTED

controller class should be instantiated to handle the request. Then, the
controller will use the ActionID part to determine which action should be
instantiated to do the real work. In this example case, the route site/say
will be resolved to the siteController controller class and the say action. As
a result, the SiteController::actionSay() method will be called to handle the
request.

Info: Like actions, controllers also have IDs that uniquely identify
them in an application. Controller IDs use the same naming rules
as action IDs. Controller class names are derived from controller
IDs by removing dashes from the IDs, capitalizing the first letter
in each word, and suffixing the resulting string with the word
Controller. For example, the controller ID post-comment corres-
ponds to the controller class name PostCommentController.

2.4.4 Summary

In this section, you have touched the controller and view parts of the MVC
architectural pattern. You created an action as part of a controller to handle
a specific request. And you also created a view to compose the response’s
content. In this simple example, no model was involved as the only data
used was the message parameter.

You have also learned about routes in Yii, which act as the bridge between
user requests and controller actions.

In the next section, you will learn how to create a model, and add a new
page containing an HTML form.

2.5 Working with Forms

This section describes how to create a new page with a form for getting data
from users. The page will display a form with a name input field and an
email input field. After getting those two pieces of information from the
user, the page will echo the entered values back for confirmation.

To achieve this goal, besides creating an action and two views, you will
also create a model.

Through this tutorial, you will learn how to:

e create a model to represent the data entered by a user through a form,

e declare rules to validate the data entered,

e build an HTML form in a view.

2.5.1 Creating a Model

The data to be requested from the user will be represented by an EntryForm
model class as shown below and saved in the file models/EntryForm.php. Please

2.5. WORKING WITH FORMS 31
refer to the Class Autoloading section for more details about the class file
naming convention.

<7php

namespace app\models;

use Yii;
use yii\base\Model;

class EntryForm extends Model

{
public $name;
public $email;
public function rules()
{
return [
[['name', 'email'], 'required'],
['email', 'email'],
1;
}
}

The class extends from yii\base\Model, a base class provided by Yii, com-
monly used to represent form data.

Info: yii\base\Model is used as a parent for model classes not
associated with database tables. yii\db\ActiveRecord is nor-
mally the parent for model classes that do correspond to database
tables.

The EntryForm class contains two public members, name and email, which are
used to store the data entered by the user. It also contains a method named
rules(), which returns a set of rules for validating the data. The validation
rules declared above state that

e both the name and email values are required

e the email data must be a syntactically valid email address
If you have an EntryForm object populated with the data entered by a user,
you may call its validate () method to trigger the data validation routines.
A data validation failure will set the hasErrors property to true, and you
may learn what validation errors occurred through errors.

<7php

$model = new EntryForm();

$model->name = 'Qiang';

$model->email = 'bad';

if ($model->validate()) {
// Good!

} else {

32 CHAPTER 2. GETTING STARTED

// Failure!
// Use $model->getErrors()

2.5.2 Creating an Action

Next, you’ll need to create an entry action in the site controller that will use
the new model. The process of creating and using actions was explained in
the Saying Hello section.

<7php

namespace app\controllers;
use Yii;

use yii\web\Controller;

use app\models\EntryForm;

class SiteController extends Controller

{
// ...existing code...
public function actionEntry()
{
$model = new EntryForm();
if ($model->load(Yii: :$app->request->post()) && $model->validate())
{
// valid data received in $model
// do something meaningful here about $model ...
return $this->render('entry-confirm', ['model' => $model]);
} else {
// either the page is initially displayed or there is some
validation error
return $this->render('entry', ['model' => $modell);
}
}
}

The action first creates an EntryForm object. It then tries to populate the
model with the data from $_posT, provided in Yii by yii\web\Request::
post (). If the model is successfully populated (i.e., if the user has submitted
the HTML form), the action will call validate() to make sure the values
entered are valid.

Info: The expression Yii::$app represents the application in-
stance, which is a globally accessible singleton. It is also a ser-
vice locator that provides components such as request, response,
db, etc. to support specific functionality. In the above code, the

2.5. WORKING WITH FORMS 33

request component of the application instance is used to access
the $_posT data.

If everything is fine, the action will render a view named entry-confirm to
confirm the successful submission of the data to the user. If no data is sub-
mitted or the data contains errors, the entry view will be rendered, wherein
the HTML form will be shown, along with any validation error messages.

Note: In this very simple example we just render the confirm-
ation page upon valid data submission. In practice, you should
consider using refresh() or redirect() to avoid form resub-

mission problems>”.

2.5.3 Creating Views

Finally, create two view files named entry-confirm and entry. These will be
rendered by the entry action, as just described.

The entry-confirm view simply displays the name and email data. It
should be stored in the file views/site/entry-confirm.php.

<7php

use yii\helpers\Html;

2>

<p>You have entered the following information:</p>

<label>Name</label>: <?= Html::encode($model->name) ?></1i>
<label>Email</label>: <?= Html::encode($model->email) ?></1i>

The entry view displays an HTML form. It should be stored in the file
views/site/entry.php.

<7php

use yii\helpers\Html;

use yii\widgets\ActiveForm;

2>

<?php $form = ActiveForm::begin(); 2>

<?= $form->field($model, 'name') 2>
<?= $form->field($model, 'email') 2>
<div class="form-group">
<?= Html::submitButton('Submit', ['class' => 'btn btn-primary']) ?>

</div>

<?php ActiveForm::end(); 2>

3"https://en.wikipedia.org/wiki/Post/Redirect/Get

https://en.wikipedia.org/wiki/Post/Redirect/Get

34 CHAPTER 2. GETTING STARTED

The view uses a powerful widget called ActiveForm to build the HTML
form. The begin() and end() methods of the widget render the opening and
closing form tags, respectively. Between the two method calls, input fields are
created by the field () method. The first input field is for the “name” data,
and the second for the “email” data. After the input fields, the yii\helpers
\Html: : submitButton() method is called to generate a submit button.

2.5.4 Trying it Out

To see how it works, use your browser to access the following URL:

http://hostname/index.php?r=site},2Fentry

You will see a page displaying a form with two input fields. In front of
each input field, a label indicates what data is to be entered. If you click
the submit button without entering anything, or if you do not provide a
valid email address, you will see an error message displayed next to each
problematic input field.

My Company

Name

[l

Name cannot be blank.

Email

[l

Email cannot be blank.

Submit

© My Gompany 2014 Powered by Yii Frame w
’

After entering a valid name and email address and clicking the submit
button, you will see a new page displaying the data that you just entered.

2.5. WORKING WITH FORMS 35

My Gompany Home About Contact Login

‘You have entered the following information:

+ Name: Qiang Xue
+ Email: tester@example.com

© My Company 2014 Powered by Yii Frame w
’

Magic Explained

You may wonder how the HTML form works behind the scene, because it
seems almost magical that it can display a label for each input field and show
error messages if you do not enter the data correctly without reloading the
page.

Yes, the data validation is initially done on the client-side using JavaS-
cript, and secondarily performed on the server-side via PHP. yii\widgets
\ActiveForm is smart enough to extract the validation rules that you have
declared in EntryForm, turn them into executable JavaScript code, and use the
JavaScript to perform data validation. In case you have disabled JavaScript
on your browser, the validation will still be performed on the server-side, as
shown in the actionEntry() method. This ensures data validity in all circum-
stances.

Warning: Client-side validation is a convenience that provides
for a better user experience. Server-side validation is always re-
quired, whether or not client-side validation is in place.

The labels for input fields are generated by the field() method, using the
property names from the model. For example, the label Name will be generated
for the name property.

You may customize a label within a view using the following code:

<?= $form->field($model, 'name')->label('Your Name') 2>
<?= $form->field($model, 'email')->label('Your Email') 2>

36 CHAPTER 2. GETTING STARTED

Info: Yii provides many such widgets to help you quickly build
complex and dynamic views. As you will learn later, writing
a new widget is also extremely easy. You may want to turn
much of your view code into reusable widgets to simplify view
development in future.

2.5.5 Summary

In this section of the guide, you have touched every part in the MVC archi-
tectural pattern. You have learned how to create a model class to represent
the user data and validate said data.

You have also learned how to get data from users and how to display
data back in the browser. This is a task that could take you a lot of time
when developing an application, but Yii provides powerful widgets to make
this task very easy.

In the next section, you will learn how to work with databases, which
are needed in nearly every application.

2.6 Working with Databases

This section will describe how to create a new page that displays country
data fetched from a database table named country. To achieve this goal, you
will configure a database connection, create an Active Record class, define
an action, and create a view.

Through this tutorial, you will learn how to:

e configure a DB connection,

e define an Active Record class,

e query data using the Active Record class,

e display data in a view in a paginated fashion.
Note that in order to finish this section, you should have basic knowledge and
experience using databases. In particular, you should know how to create a
database, and how to execute SQL statements using a DB client tool.

2.6.1 Preparing the Database

To begin, create a database named yii2basic, from which you will fetch
data in your application. You may create an SQLite, MySQL, PostgreSQL,
MSSQL or Oracle database, as Yii has built-in support for many database
applications. For simplicity, MySQL will be assumed in the following de-
scription.

Info: While MariaDB used to be a drop-in replacement for
MySQL this is no longer fully true. In case you wish to use
advanced features like JsoN support in MariaDB, please check
the MariaDB extension listed below.

2.6. WORKING WITH DATABASES 37

Next, create a table named country in the database, and insert some sample
data. You may run the following SQL statements to do so:

CREATE TABLE ~country” (
“code” CHAR(2) NOT NULL PRIMARY KEY,
“name”~ CHAR(52) NOT NULL,
“population”™ INT(11) NOT NULL DEFAULT 'O’
) ENGINE=InnoDB DEFAULT CHARSET=utf8;

INSERT INTO "“country” VALUES ('AU', 'Australia',24016400);
INSERT INTO ~country”™ VALUES ('BR','Brazil',205722000);

INSERT INTO ~country VALUES ('CA','Canada',35985751);

INSERT INTO "“country VALUES ('CN', 'China',1375210000) ;

INSERT INTO ~country”™ VALUES ('DE','Germany',81459000);

INSERT INTO "country” VALUES ('FR','France',64513242);

INSERT INTO ~country VALUES ('GB','United Kingdom',65097000) ;
INSERT INTO ~country”™ VALUES ('IN','India',1285400000);

INSERT INTO ~country™ VALUES ('RU', 'Russia',146519759) ;

INSERT INTO "“country VALUES ('US','United States',322976000) ;

At this point, you have a database named yii2basic, and within it a country
table with three columns, containing ten rows of data.

2.6.2 Configuring a DB Connection

Before proceeding, make sure you have installed both the PDO?*® PHP ex-
tension and the PDO driver for the database you are using (e.g. pdo_mysql
for MySQL). This is a basic requirement if your application uses a relational
database.

With those installed, open the file config/db.php and change the para-
meters to be correct for your database. By default, the file contains the
following:

<7php

return [
'class' => 'yiildb\Connection',
'dsn' => 'mysql:host=localhost;dbname=yii2basic’,
'username' => 'root',
'password' => '',
'charset' => 'utf8',

1;

The config/db.php file is a typical file-based configuration tool. This particu-
lar configuration file specifies the parameters needed to create and initialize
a yii\db\Connection instance through which you can make SQL queries
against the underlying database.

The DB connection configured above can be accessed in the application
code via the expression Yii: :$app->db.

38https://www.php.net/manual/en/book.pdo.php

https://www.php.net/manual/en/book.pdo.php

38 CHAPTER 2. GETTING STARTED

Info: The config/db.php file will be included by the main ap-
plication configuration config/web.php, which specifies how the
application instance should be initialized. For more information,
please refer to the Configurations section.

If you need to work with databases support for which isn’t bundled with Yii,
check the following extensions:
o Informix3’
IBM DB2%
Firebird*!
MariaDB*?

2.6.3 Creating an Active Record

To represent and fetch the data in the country table, create an Active Record-
derived class named Country, and save it in the file models/Country.php.

<7php

namespace app\models;

use yii\db\ActiveRecord;

class Country extends ActiveRecord

{
}

The Country class extends from yii\db\ActiveRecord. You do not need to
write any code inside of it! With just the above code, Yii will guess the
associated table name from the class name.

Info: If no direct match can be made from the class name to
the table name, you can override the yii\db\ActiveRecord::
tableName () method to explicitly specify the associated table
name.

Using the Country class, you can easily manipulate data in the country table,
as shown in these snippets:

use app\models\Country;

// get all rows from the country table and order them by "name"
$countries = Country::find()->orderBy('name')->all();

3nttps://github.com/edgardmessias/yii2-informix
“Ohttps://github.com/edgardmessias/yii2-ibm-db2
“https://github. com/edgardmessias/yii2-firebird
“Zhttps://github.com/sam-it/yii2-mariadb

https://github.com/edgardmessias/yii2-informix
https://github.com/edgardmessias/yii2-ibm-db2
https://github.com/edgardmessias/yii2-firebird
https://github.com/sam-it/yii2-mariadb

2.6. WORKING WITH DATABASES 39

// get the row whose primary key ts "US"
$country = Country::findOne('US');

// displays "United States”
echo $country->name;

// modifies the country name to be "U.S.4." and save it to database
$country->name = 'U.S.A."';
$country->save();

Info: Active Record is a powerful way to access and manipulate
database data in an object-oriented fashion. You may find more
detailed information in the Active Record section. Alternatively,
you may also interact with a database using a lower-level data
accessing method called Database Access Objects.

2.6.4 Creating an Action

To expose the country data to end users, you need to create a new action.
Instead of placing the new action in the site controller, like you did in the
previous sections, it makes more sense to create a new controller specific-
ally for all actions related to the country data. Name this new controller
CountryController, and create an index action in it, as shown in the following.

<7php
namespace app\controllers;

use yii\web\Controller;
use yiildata\Pagination;
use app\models\Country;

class CountryController extends Controller
{
public function actionIndex()
{
$query = Country::find();

$pagination = new Pagination([
'defaultPageSize' => 5,
'"totalCount' => $query->count(),

D;

$countries = $query->orderBy('name')
->offset($pagination->offset)
->limit($pagination->limit)
->allQ);

return $this->render('index', [
'countries' => $countries,
'pagination' => $pagination,

40 CHAPTER 2. GETTING STARTED

D;

Save the above code in the file controllers/CountryController.php.

First, The index action calls Country: :£ind(). This find()*® method creates
a ActiveQuery** query object, which provides methods to access data from
the country table.

To limit the number of countries returned in each request, the query
object is paginated with the help of a yii\data\Pagination object. The
Pagination object serves two purposes:

e Sets the offset and 1imit clauses for the SQL statement represented by

the query object so that it only returns a single page of data at a time
(at most 5 rows in a page).
e [t’s used in the view to display a pager consisting of a list of page
buttons, as will be explained in the next subsection.
Next, all()* returns all country records based on the query results.

At the end of the code, the index action renders a view named index, and

passes the returned country data as well as the pagination information to it.

2.6.5 Creating a View

Under the views directory, first create a sub-directory named country. This
folder will be used to hold all the views rendered by the country controller.
Within the views/country directory, create a file named index.php containing
the following:

<7php
use yii\helpers\Html;
use yii\widgets\LinkPager;
2>
<h1>Countries</h1>

<?php foreach ($countries as $country): 2>
<1li>
<?= Html::encode("{$country->code} ({$country->name})") 2>:
<?= $country->population ?>
</1i>
<?php endforeach; ?>

<?= LinkPager::widget (['pagination' => $pagination]) 2>

“https://www.yiiframework.com/doc/api/2.0/yii-db-activerecord#
find () -detail

“https://www.yiiframework.com/doc/api/2.0/yii-db-activequery

“®https://www.yiiframework.com/doc/api/2.0/yii-db-activequery#all()-detail

https://www.yiiframework.com/doc/api/2.0/yii-db-activerecord#find()-detail
https://www.yiiframework.com/doc/api/2.0/yii-db-activerecord#find()-detail
https://www.yiiframework.com/doc/api/2.0/yii-db-activequery
https://www.yiiframework.com/doc/api/2.0/yii-db-activequery#all()-detail

2.6. WORKING WITH DATABASES 41

The view has two sections relative to displaying the country data. In the
first part, the provided country data is traversed and rendered as an un-
ordered HTML list. In the second part, a yii\widgets\LinkPager widget
is rendered using the pagination information passed from the action. The
LinkPager widget displays a list of page buttons. Clicking on any of them will
refresh the country data in the corresponding page.

2.6.6 Trying it Out

To see how all of the above code works, use your browser to access the
following URL:

http://hostname/index.php?r=country’2Findex

Countries

« AU (Australia): 24016400
BR (Brazil): 205722000

+ CA (Canada): 35985751
CN (China): 1375210000

« FR (France): 64513242

‘|

© My Company 2016 Powered by Yii Framework |
’

At first, you will see a page showing five countries. Below the countries,
you will see a pager with four buttons. If you click on the button “2”, you
will see the page display another five countries in the database: the second
page of records. Observe more carefully and you will find that the URL in
the browser also changes to

http://hostname/index.php?r=country’2Findex&page=2

Behind the scenes, Pagination is providing all of the necessary functionality
to paginate a data set:
e Initially, Pagination represents the first page, which reflects the coun-
try SELECT query with the clause LIMIT 5 OFFSET 0. As a result, the
first five countries will be fetched and displayed.

42 CHAPTER 2. GETTING STARTED

e The LinkPager widget renders the page buttons using the URLs cre-
ated by Pagination. The URLs will contain the query parameter page,
which represents the different page numbers.

e Ifyou click the page button “2”, a new request for the route country/index
will be triggered and handled. Pagination reads the page query para-
meter from the URL and sets the current page number to 2. The new
country query will thus have the clause LIMIT 5 OFFSET 5 and return the
next five countries for display.

2.6.7 Summary

In this section, you learned how to work with a database. You also learned
how to fetch and display data in pages with the help of yii\data\Pagination
and yii\widgets\LinkPager.

In the next section, you will learn how to use the powerful code gen-
eration tool, called Gii*®, to help you rapidly implement some commonly
required features, such as the Create-Read-Update-Delete (CRUD) opera-
tions for working with the data in a database table. As a matter of fact, the
code you have just written can all be automatically generated in Yii using
the Gii tool.

2.7 Generating Code with Gii

This section will describe how to use Gii*” to automatically generate code
that implements some common Web site features. Using Gii to auto-generate
code is simply a matter of entering the right information per the instructions
shown on the Gii Web pages.

Through this tutorial, you will learn how to:

e enable Gii in your application,

e use Gii to generate an Active Record class,

e use Gii to generate the code implementing the CRUD operations for a

DB table,
e customize the code generated by Gii.

2.7.1 Starting Gii

Gii*® is provided in Yii as a module. You can enable Gii by configuring it in
the modules property of the application. Depending upon how you created
your application, you may find the following code is already provided in the
config/web.php configuration file:

“https://www.yiiframework.com/extension/yiisoft/yii2-gii/doc/guide
Thttps://www.yiiframework.com/extension/yiisoft/yii2-gii/doc/guide
“Bhttps://www.yiiframework.com/extension/yiisoft/yii2-gii/doc/guide

https://www.yiiframework.com/extension/yiisoft/yii2-gii/doc/guide
https://www.yiiframework.com/extension/yiisoft/yii2-gii/doc/guide
https://www.yiiframework.com/extension/yiisoft/yii2-gii/doc/guide

2.7. GENERATING CODE WITH GII 43

$config = [... 1;

if (YII_ENV_DEV) {
$config['bootstrap'][] = 'gii';
$config['modules']['gii'] = [
'class' => 'yii\gii\Module',

1;

The above configuration states that when in development environment, the
application should include a module named gii, which is of class yii\gii
\Module.

If you check the entry script web/index.php of your application, you will
find the following line, which essentially makes YII_ENV_DEV to be true.

defined('YII_ENV') or define('YII_ENV', 'dev');

Thanks to that line, your application is in development mode, and will have
already enabled Gii, per the above configuration. You can now access Gii
via the following URL:

http://hostname/index.php?r=gii

Note: If you are accessing Gii from a machine other than loc-
alhost, the access will be denied by default for security purpose.
You can configure Gii to add the allowed IP addresses as follows,

'gii' => [
'class' => 'yii\gii\Module',
'allowedIPs' => ['127.0.0.1', '::1', '192.168.0.%"',

'192.168.178.20'] // adjust this to your needs
],

CHAPTER 2. GETTING STARTED

Welcome to Gii

Start the fun with the following code generators:

Model Generator

This generator generates an ActiveRecord class for the
specified database table.

Start»

Form Generator

This generator generates a view script file that displays
a form to collect input for the specified model class.

Start »

A Product of Yii Software LLC

CRUD Generator

This generator generates a controller and views that
implement CRUD (Create, Read, Update, Delete)
operations for the specified data model.

Start »

Module Generator

This generator helps you to generate the skeleton code
needed by a Yii module.

Start »

Controller Generator

This generator helps you to quickly generate a new
controller class, one or several controller actions and
their corresponding views.

Start »

Extension Generator

This generator helps you to generate the files needed by
a Yii extension.

Start »

Powered by Yii Fram ®
»

2.7.2 Generating an Active Record Class

To use Gii to generate an Active Record class, select the “Model Generator”
(by clicking the link on the Gii index page). Then fill out the form as follows:

e Table Name: country
e Model Class: Country

2.7. GENERATING CODE WITH GII 45

Model Generator
CRUD Generator >
This generator generates an ActiveRecond class for the specified database table.
Controller Generator > Table Name
Form Generator > country
Module Generator > Model Class
Country H
Extension Generator > ’ g
Namespace
app\models
Base Class

yindb\ActiveRecord
Database Connecfion ID

Al relations

Generate Labels from DB Comments

Code Template
default /proj i2-app! ryii i2-gii
Click on the above cenerate button to generate the files selected below: ¥ Unchanged
Code File Action W
models\Country php create ¥
A Product of Yii Software LLC Powered by i Framework

Next, click on the “Preview” button. You will see models/Country.php is
listed in the resulting class file to be created. You may click on the name of
the class file to preview its content.

When using Gii, if you have already created the same file and would be
overwriting it, click the diff button next to the file name to see the differences
between the code to be generated and the existing version.

46 CHAPTER 2. GETTING STARTED

+ =+ O D models\Country.php +locow

cperty integer $id
operty string $name
cperty string Scade

ss Country extends \yiildb\Activekecord

When overwriting an existing file, check the box next to “overwrite” and
then click the “Generate” button. If creating a new file, you can just click
“Generate”.

Next, you will see a confirmation page indicating the code has been
successfully generated. If you had an existing file, you’ll also see a message
indicating that it was overwritten with the newly generated code.

2.7.3 Generating CRUD Code

CRUD stands for Create, Read, Update, and Delete, representing the four
common tasks taken with data on most Web sites. To create CRUD func-
tionality using Gii, select the “CRUD Generator” (by clicking the link on the
Gii index page). For the “country” example, fill out the resulting form as
follows:

e Model Class: app\models\Country

e Search Model Class: app\models\CountrySearch

e Controller Class: app\controllers\CountryController

2.7. GENERATING CODE WITH GII 47

Model Generator > CRU D G t
CRUD Generator >

This generator generates a controller and views that implement CRUD (Create, Read, Update, Delete) operations for the specified
Controller Generator b data model

Model Class
Form Generator > s

app\models\Country

Module Generator >

Search Model Class
Extension Generator >

app\models\Country Search

Controller Class

app\controllers\CountryController

View Path

@app/views/country

Base Controller Class

yilweb\Controller

Widget Used in Index Page

GridView

Enable Pjax

default (/projects/yii2-app/vendor/yiisoft/yii2-giilgenerators/crud/default)

Next, click on the “Preview” button. You will see a list of files to be
generated, as shown below.

piviews/country

Base Controller Class

yiiweb'\Controller

GridView

Enable 118N

default (/projects/yii2-app/vendoriyiisoftyiiz-givgenerators/crud/default)

Click on the above Generate bution to generate the files selected below: @l Unchanged
Code File Action c
controllers\CountryConfrolier php create |
models\CountrySearch php create |
views\country_form php create |
views\country_search.php create !
ountry\create. php create !
ountry\index.php create !
views\country\update php create v
views\country\view php create |

If you previously created the controllers/CountryController.php and views/country/index.php
files (in the databases section of the guide), check the “overwrite” box to re-
place them. (The previous versions did not have full CRUD support.)

48 CHAPTER 2. GETTING STARTED

2.7.4 Trying it Out

To see how it works, use your browser to access the following URL:

http://hostname/index.php?r=country’,2Findex

You will see a data grid showing the countries from the database table. You
may sort the grid, or filter it by entering filter conditions in the column
headers.

For each country displayed in the grid, you may choose to view its details,
update it, or delete it. You may also click on the “Create Country” button
on top of the grid to be provided with a form for creating a new country.

My Company t G Login

Home

Countries

SHUWH’VQ 1-10 of 10 items.
Code Name Population
1 AU Australia 18886000 ® /1
2 BR Brazi 170115000 o/ 1
3 cA Canada 1147000 i)
4 N China 1277558000 @/ 1
5 DE Germany 82164700 oy}
6 FR France 59225700 ®/ /10
7 GB United Kingdom 59623400 o/0
8 IN India 1013662000 o/ 1
9 RU Russia 146834000 o/ 1
0 Us United States 278357000 @/ 1

© My Company 2014 Powered by Yii Frame w
»

2.8. LOOKING AHEAD 49

My Company Home About Contact Login

Home / Countries / United States

Update Country: United States

Code

us

Name

United States

Population

278357000

© My Company 2014 Powered by Yii Frame w
L4

The following is the list of the files generated by Gii, in case you want to
investigate how these features are implemented, or to customize them:

e Controller: controllers/CountryController.php

e Models: models/Country.php and models/CountrySearch.php

e Views: views/country/#.php

Info: Gii is designed to be a highly customizable and extensible
code generation tool. Using it wisely can greatly accelerate your
application development speed. For more details, please refer to
the Gii*” section.

2.7.5 Summary

In this section, you have learned how to use Gii to generate the code that
implements complete CRUD functionality for content stored in a database
table.

2.8 Looking Ahead

If you've read through the entire “Getting Started” chapter, you have now
created a complete Yii application. In the process, you have learned how to
implement some commonly needed features, such as getting data from users
via an HTML form, fetching data from a database, and displaying data in a

nttps://www.yiiframework.com/extension/yiisoft/yii2-gii/doc/guide

https://www.yiiframework.com/extension/yiisoft/yii2-gii/doc/guide

50 CHAPTER 2. GETTING STARTED

paginated fashion. You have also learned how to use Gii®” to generate code
automatically. Using Gii for code generation turns the bulk of your Web
development process into a task as simple as just filling out some forms.

This section will summarize the Yii resources available to help you be

more productive when using the framework.

e Documentation

— The Definitive Guide®!: As the name indicates, the guide precisely
defines how Yii should work and provides general guidance about
using Yii. It is the single most important Yii tutorial, and one
that you should read before writing any Yii code.

— The Class Reference®®: This specifies the usage of every class
provided by Yii. It should be mainly used when you are writ-
ing code and want to understand the usage of a particular class,
method, property. Usage of the class reference is best only after
a contextual understanding of the entire framework.

— The Wiki Articles®®: The wiki articles are written by Yii users
based on their own experiences. Most of them are written like
cookbook recipes, and show how to solve particular problems us-
ing Yii. While the quality of these articles may not be as good as
the Definitive Guide, they are useful in that they cover broader
topics and can often provide ready-to-use solutions.

— Books®*

e Extensions®: Yii boasts a library of thousands of user-contributed
extensions that can be easily plugged into your applications, thereby
making your application development even faster and easier.

e Community

— Forum: https://forum.yiiframework.com/

— IRC chat: The #yii channel on the Libera (ircs://irc.libera.
chat:6697/yii)

— Slack chanel: https://join.slack.com/t/yii/shared_invite/
enQtMzQ4MDExMDcyNTk2LTcONDQ2ZTZhN jkzZDgwY jE4Y jZ1INGQxZjFmZDB jZTU3N jViMDE:

— Gitter chat: https://gitter.im/yiisoft/yii2

— GitHub: https://github.com/yiisoft/yii2

— Facebook: https://www.facebook.com/groups/yiitalk/

— Twitter: https://twitter.com/yiiframework

— LinkedIn: https://www.linkedin.com/groups/yii-framework-1483367

— Stackoverflow: https://stackoverflow.com/questions/tagged/
yii2

SOnttps://www.yiiframework.com/extension/yiisoft/yii2-gii/doc/guide
Shttps://www.yiiframework.com/doc-2.0/guide-README . html
*https://www.yiiframework.com/doc-2.0/index.html
S3https://wuw.yiiframework.com/wiki/?tag=yii2
Shttps://www.yiiframework.com/books
Shttps://www.yiiframework.com/extensions/

https://forum.yiiframework.com/
ircs://irc.libera.chat:6697/yii
ircs://irc.libera.chat:6697/yii
https://join.slack.com/t/yii/shared_invite/enQtMzQ4MDExMDcyNTk2LTc0NDQ2ZTZhNjkzZDgwYjE4YjZlNGQxZjFmZDBjZTU3NjViMDE4ZTMxNDRkZjVlNmM1ZTA1ODVmZGUwY2U3NDA
https://join.slack.com/t/yii/shared_invite/enQtMzQ4MDExMDcyNTk2LTc0NDQ2ZTZhNjkzZDgwYjE4YjZlNGQxZjFmZDBjZTU3NjViMDE4ZTMxNDRkZjVlNmM1ZTA1ODVmZGUwY2U3NDA
https://gitter.im/yiisoft/yii2
https://github.com/yiisoft/yii2
https://www.facebook.com/groups/yiitalk/
https://twitter.com/yiiframework
https://www.linkedin.com/groups/yii-framework-1483367
https://stackoverflow.com/questions/tagged/yii2
https://stackoverflow.com/questions/tagged/yii2
https://www.yiiframework.com/extension/yiisoft/yii2-gii/doc/guide
https://www.yiiframework.com/doc-2.0/guide-README.html
https://www.yiiframework.com/doc-2.0/index.html
https://www.yiiframework.com/wiki/?tag=yii2
https://www.yiiframework.com/books
https://www.yiiframework.com/extensions/

Chapter 3

Application Structure

3.1

Yii applications are organized according to the model-view-controller (MVC)

Overview

1

architectural pattern. Models represent data, business logic and rules; views
are output representation of models; and controllers take input and convert
it to commands for models and views.

Besides MVC, Yii applications also have the following entities:

entry scripts: they are PHP scripts that are directly accessible by end
users. They are responsible for starting a request handling cycle.
applications: they are globally accessible objects that manage applic-
ation components and coordinate them to fulfill requests.

application components: they are objects registered with applications
and provide various services for fulfilling requests.

modules: they are self-contained packages that contain complete MVC
by themselves. An application can be organized in terms of multiple
modules.

filters: they represent code that need to be invoked before and after
the actual handling of each request by controllers.

widgets: they are objects that can be embedded in views. They may
contain controller logic and can be reused in different views.

The following diagram shows the static structure of an application:

"https://wikipedia.org/wiki/Model-view-controller

51

https://wikipedia.org/wiki/Model-view-controller

52 CHAPTER 3. APPLICATION STRUCTURE

entry script

A

0.* 0.* S
- application
m /9,,*./‘ e component

module Tl"*
‘0__*\ 0..*

controller filter

/\

view model

/'\

widget R asset bundle

3.2 Entry Scripts

Entry scripts are the first step in the application bootstrapping process. An
application (either Web application or console application) has a single entry
script. End users make requests to entry scripts which instantiate application
instances and forward the requests to them.

Entry scripts for Web applications must be stored under Web accessible
directories so that they can be accessed by end users. They are often named
as index.php, but can also use any other names, provided Web servers can
locate them.

Entry scripts for console applications are usually stored under the base
path of applications and are named as yii (with the .php suffix). They should
be made executable so that users can run console applications through the
command ./yii <route> [arguments] [options].

Entry scripts mainly do the following work:

e Define global constants;

Register Composer autoloader?;

Include the Yii class file;

Load application configuration;

Create and configure an application instance;

’https://getcomposer.org/doc/01-basic-usage.md#autoloading

https://getcomposer.org/doc/01-basic-usage.md#autoloading

3.2. ENTRY SCRIPTS 53
e Call yii\base\Application: :run() to process the incoming request.

3.2.1 Web Applications

The following is the code in the entry script for the Basic Web Project
Template.

<7php

defined('YII_DEBUG') or define('YII_DEBUG', true);
defined('YII_ENV') or define('YII_ENV', 'dev');

// register Composer autoloader
require __DIR__ . '/../vendor/autoload.php';

// include Yit class file
require __DIR__ . '/../vendor/yiisoft/yii2/Yii.php';

// load application configuration
$config = require __DIR__ . '/../config/web.php';

// create, configure and run application
(new yii\web\Application($config))->run();

3.2.2 Console Applications

Similarly, the following is the code for the entry script of a console applica-
tion:

#!/usr/bin/env php
<7php
VAL

* Yii console bootstrap file.
0link https://www.yitframework.com/

@copyright Copyright (c) 2008 Yii Software LLC

¥
*
*
* Olicense https://www.yiiframework.com/license/

*/

defined('YII_DEBUG') or define('YII_DEBUG', true);
defined('YII_ENV') or define('YII_ENV', 'dev');

// register Composer autoloader
require __DIR__ . '/vendor/autoload.php';

// include Yit class file
require __DIR__ . '/vendor/yiisoft/yii2/Yii.php';

// load application configuration
$config = require __DIR__ . '/config/console.php';

$application = new yiilconsole\Application($config);

54 CHAPTER 3. APPLICATION STRUCTURE

$exitCode = $application->run();
exit($exitCode) ;

3.2.3 Defining Constants

Entry scripts are the best place for defining global constants. Yii supports
the following three constants:

e YII_DEBUG: specifies whether the application is running in debug mode.
When in debug mode, an application will keep more log information,
and will reveal detailed error call stacks if exceptions are thrown. For
this reason, debug mode should be used mainly during development.
The default value of YII_DEBUG is false.

e YII_ENV: specifies which environment the application is running in. This
will be described in more detail in the Configurations section. The
default value of YII_ENV is 'prod', meaning the application is running
in production environment.

e YII_ENABLE_ERROR_HANDLER: specifies whether to enable the error handler
provided by Yii. The default value of this constant is true.

When defining a constant, we often use the code like the following:

defined('YII_DEBUG') or define('YII_DEBUG', true);

which is equivalent to the following code:

if ('defined('YII_DEBUG')) {
define('YII_DEBUG', true);
}

Clearly the former is more succinct and easier to understand.
Constant definitions should be done at the very beginning of an entry
script so that they can take effect when other PHP files are being included.

3.3 Applications

Applications are objects that govern the overall structure and lifecycle of Yii
application systems. Each Yii application system contains a single applic-
ation object which is created in the entry script and is globally accessible
through the expression \Yii::$app.

Info: Depending on the context, when we say “an application”, it
can mean either an application object or an application system.

There are two types of applications: Web applications and console applications.
As the names indicate, the former mainly handles Web requests, while the
latter handles console command requests.

3.3. APPLICATIONS 95

3.3.1 Application Configurations

When an entry script creates an application, it will load a configuration and
apply it to the application, as follows:

require __DIR__ . '/../vendor/autoload.php';

require __DIR__ . '/../vendor/yiisoft/yii2/Yii.php';

// load application configuration
$config = require __DIR__ . '/../config/web.php';

// instantiate and configure the application
(new yii\web\Application($config))->run();

Like normal configurations, application configurations specify how to ini-
tialize properties of application objects. Because application configurations
are often very complex, they usually are kept in configuration files, like the
web.php file in the above example.

3.3.2 Application Properties

There are many important application properties that you should configure
in application configurations. These properties typically describe the envir-
onment that applications are running in. For example, applications need to
know how to load controllers, where to store temporary files, etc. In the
following, we will summarize these properties.

Required Properties

In any application, you should at least configure two properties: id and
basePath.

id The id property specifies a unique ID that differentiates an applic-
ation from others. It is mainly used programmatically. Although not a
requirement, for best interoperability it is recommended that you use only
alphanumeric characters when specifying an application ID.

basePath The basePath property specifies the root directory of an applic-
ation. It is the directory that contains all protected source code of an applic-
ation system. Under this directory, you normally will see sub-directories such
as models, views, and controllers, which contain source code corresponding
to the MVC pattern.

You may configure the basePath property using a directory path or a
path alias. In both forms, the corresponding directory must exist, or an ex-
ception will be thrown. The path will be normalized by calling the realpath()
function.

56 CHAPTER 3. APPLICATION STRUCTURE

The basePath property is often used to derive other important paths (e.g.
the runtime path). For this reason, a path alias named eapp is predefined to
represent this path. Derived paths may then be formed using this alias (e.g.
@app/runtime to refer to the runtime directory).

Important Properties

The properties described in this subsection often need to be configured be-
cause they differ across different applications.

aliases This property allows you to define a set of aliases in terms of
an array. The array keys are alias names, and the array values are the
corresponding path definitions. For example:

[
'aliases' => [
'@namel' => 'path/to/pathl’',
'@name2' => 'path/to/path2',
1,
]

This property is provided so that you can define aliases in terms of applica-
tion configurations instead of by calling the Yii::setAlias() method.

bootstrap This is a very useful property. It allows you to specify an array
of components that should be run during the application bootstrapping
process. For example, if you want a module to customize the URL rules,
you may list its ID as an element in this property.

Each component listed in this property may be specified in one of the
following formats:

e an application component ID as specified via components,
a module ID as specified via modules,
a class name,
a configuration array,
an anonymous function that creates and returns a component.
For example:

L
'bootstrap' => [
// an application component ID or module ID
'demo’,

// a class name
'app\components\Profiler',

// a configuration array
[

'class' => 'app\components\Profiler',

3.3. APPLICATIONS o7

'level' => 3,

]’

// an anonymous function
function () {
return new app\components\Profiler();

}
])

Info: If a module ID is the same as an application component ID,
the application component will be used during the bootstrapping
process. If you want to use the module instead, you may specify
it using an anonymous function like the following:

[
function () {
return Yii::$app->getModule('user');
},
]

During the bootstrapping process, each component will be instantiated. If
the component class implements yii\base\BootstrapInterface, its bootstrap()
method will also be called.

Another practical example is in the application configuration for the Ba-
sic Project Template, where the debug and gii modules are configured as
bootstrapping components when the application is running in the develop-
ment environment:
if (YII_ENV_DEV) {

// configuration adjustments for 'dev' environment

$config['bootstrap'][] = 'debug';
$config['modules'] ['debug'] = 'yiildebug\Module';

$config['bootstrap'][] = 'gii';
$config['modules']['gii'] = 'yii\gii\Module';

Note: Putting too many components in bootstrap will degrade
the performance of your application because for each request, the
same set of components need to be run. So use bootstrapping
components judiciously.

catchAll This property is supported by Web applications only. It spe-
cifies a controller action which should handle all user requests. This is mainly
used when the application is in maintenance mode and needs to handle all
incoming requests via a single action.

The configuration is an array whose first element specifies the route of
the action. The rest of the array elements (key-value pairs) specify the
parameters to be bound to the action. For example:

58 CHAPTER 3. APPLICATION STRUCTURE

[
'catchAll' => [
'offline/notice’',
'paraml' => 'valuel',
'param2' => 'value2',
1,
]

Info: Debug panel on development environment will not work
when this property is enabled.

components This is the single most important property. It allows you to
register a list of named components called application components that you
can use in other places. For example:

[
'components' => [
'cache' => [
'class' => 'yiilcaching\FileCache',
1,
'user' => [
'identityClass' => 'app\models\User',
'enableAutologin' => true,
1,
1,
]

Each application component is specified as a key-value pair in the array. The
key represents the component ID, while the value represents the component
class name or configuration.
You can register any component with an application, and the component
can later be accessed globally using the expression \Yii: :$app->componentID.
Please read the Application Components section for details.

controllerMap This property allows you to map a controller ID to an
arbitrary controller class. By default, Yii maps controller IDs to control-
ler classes based on a convention (e.g. the ID post would be mapped to
app\controllers\PostController). By configuring this property, you can break
the convention for specific controllers. In the following example, account will
be mapped to app\controllers\UserController, while article will be mapped
to app\controllers\PostController.

[
'controllerMap' => [
'account' => 'app\controllers\UserController',
'article' => [
'class' => 'app\controllers\PostController',
'enableCsrfValidation' => false,

1,

3.3. APPLICATIONS 99

])
]

The array keys of this property represent the controller IDs, while the array
values represent the corresponding controller class names or configurations.

controllerNamespace 'This property specifies the default namespace un-
der which controller classes should be located. It defaults to app\controllers.
If a controller ID is post, by convention the corresponding controller class
name (without namespace) would be PostController, and the fully qualified
class name would be app\controllers\PostController.

Controller classes may also be located under sub-directories of the dir-
ectory corresponding to this namespace. For example, given a controller
ID admin/post, the corresponding fully qualified controller class would be
app\controllers\admin\PostController.

It is important that the fully qualified controller classes should be auto-
loadable and the actual namespace of your controller classes match the value
of this property. Otherwise, you will receive a “Page Not Found” error when
accessing the application.

In case you want to break the convention as described above, you may
configure the controllerMap property.

language This property specifies the language in which the application
should display content to end users. The default value of this property is
en, meaning English. You should configure this property if your application
needs to support multiple languages.

The value of this property determines various internationalization as-
pects, including message translation, date formatting, number formatting,
etc. For example, the yii\jui\DatePicker widget will use this property
value by default to determine in which language the calendar should be dis-
played and how the date should be formatted.

It is recommended that you specify a language in terms of an IETF
language tag®. For example, en stands for English, while en-Us stands for
English (United States).

More details about this property can be found in the Internationalization
section.

modules This property specifies the modules that the application contains.
The property takes an array of module classes or configurations with the
array keys being the module IDs. For example:

[

'modules' => [

Shttps://en.wikipedia.org/wiki/IETF_language_tag

https://en.wikipedia.org/wiki/IETF_language_tag

60 CHAPTER 3. APPLICATION STRUCTURE

// a "booking" module spectified with the module class
'booking' => 'app\modules\booking\BookingModule',

// a "comment" module spectified with a configuration array
'comment' => [
'class' => 'app\modules\comment\CommentModule',
'db' => 'db’',
1,
1,

Please refer to the Modules section for more details.

name This property specifies the application name that may be displayed
to end users. Unlike the id property, which should take a unique value, the
value of this property is mainly for display purposes; it does not need to be
unique.

You do not always need to configure this property if none of your code
is using it.

params This property specifies an array of globally accessible application
parameters. Instead of using hardcoded numbers and strings everywhere in
your code, it is a good practice to define them as application parameters in
a single place and use the parameters in places where needed. For example,
you may define the thumbnail image size as a parameter like the following:

L
'params' => [
'thumbnail.size' => [128, 128],
]’

Then in your code where you need to use the size value, you can simply use
code like the following:

$size = \Yii::$app->params['thumbnail.size'];
$width = \Yii::$app->params['thumbnail.size'] [0];

Later if you decide to change the thumbnail size, you only need to modify
it in the application configuration; you don’t need to touch any dependent
code.

sourceLanguage This property specifies the language that the application
code is written in. The default value is 'en-Us', meaning English (United
States). You should configure this property if the text content in your code
is not in English.

3.3. APPLICATIONS 61

Like the language property, you should configure this property in terms
of an IETF language tag®. For example, en stands for English, while en-us
stands for English (United States).

More details about this property can be found in the Internationalization
section.

timeZone This property is provided as an alternative way of setting the
default time zone of the PHP runtime. By configuring this property, you are
essentially calling the PHP function date default timezone set()®. For
example:

[
'timeZone' => 'America/Los_Angeles',

]

For more details on the implications of setting the time zone, please check
the section on date formatting.

version This property specifies the version of the application. It defaults
to '1.0'. You do not need to configure this property if none of your code is
using it.

Useful Properties

The properties described in this subsection are not commonly configured
because their default values derive from common conventions. However, you
may still configure them in case you want to break the conventions.

charset This property specifies the charset that the application uses. The
default value is 'UTF-8', which should be kept as-is for most applications
unless you are working with a legacy system that uses a lot of non-Unicode
data.

defaultRoute This property specifies the route that an application should
use when a request does not specify one. The route may consist of a
child module ID, a controller ID, and/or an action ID. For example, help,
post/create, Or admin/post/create. If an action ID is not given, this property
will take the default value specified in yii\base\Controller: :$defaultAction.
For Web applications, the default value of this property is 'site', which
means the SiteController controller and its default action should be used. As
a result, if you access the application without specifying a route, it will show
the result of app\controllers\SiteController::actionIndex().

‘https://en.wikipedia.org/wiki/IETF_language_tag
Shttps://www.php.net/manual/en/function.date-default-timezone-set.php

https://en.wikipedia.org/wiki/IETF_language_tag
https://www.php.net/manual/en/function.date-default-timezone-set.php

62 CHAPTER 3. APPLICATION STRUCTURE

For console applications, the default value is 'help', which means the
core command yii\console\controllers\HelpController: :actionIndex()
should be used. As a result, if you run the command yii without providing
any arguments, it will display the help information.

extensions This property specifies the list of extensions that are installed
and used by the application. By default, it will take the array returned by
the file @vendor/yiisoft/extensions.php. The extensions.php file is generated
and maintained automatically when you use Composer® to install extensions.
So in most cases, you do not need to configure this property.

In the special case when you want to maintain extensions manually, you
may configure this property as follows:

'extensions' => [
[
'name' => 'extension name',
'version' => 'version number',
'bootstrap' => 'BootstrapClassName', // optional, may also be a
configuration array
'alias' => [// optional
'@aliasl' => 'to/pathl’,
'@alias2' => 'to/path2',
]’

// ... more extensions like the above ...

As you can see, the property takes an array of extension specifications. Each
extension is specified with an array consisting of name and version elements. If
an extension needs to run during the bootstrap process, a bootstrap element
may be specified with a bootstrapping class name or a configuration array.
An extension may also define a few aliases.

layout This property specifies the name of the default layout that should
be used when rendering a view. The default value is 'main', meaning the
layout file main.php under the layout path should be used. If both of the
layout path and the view path are taking the default values, the default
layout file can be represented as the path alias eapp/views/layouts/main.php.

You may configure this property to be false if you want to disable layout
by default, although this is very rare.

Shttps://getcomposer.org

https://getcomposer.org

3.3. APPLICATIONS 63

layoutPath This property specifies the path where layout files should be
looked for. The default value is the layouts sub-directory under the view
path. If the view path is taking its default value, the default layout path
can be represented as the path alias eapp/views/layouts.

You may configure it as a directory or a path alias.

runtimePath This property specifies the path where temporary files, such
as log files and cache files, can be generated. The default value is the direct-
ory represented by the alias @app/runtime.

You may configure it as a directory or a path alias. Note that the runtime
path must be writable by the process running the application. And the path
should be protected from being accessed by end users, because the temporary
files under it may contain sensitive information.

To simplify access to this path, Yii has predefined a path alias named
eruntime for it.

viewPath This property specifies the root directory where view files are
located. The default value is the directory represented by the alias eapp/views.
You may configure it as a directory or a path alias.

vendorPath This property specifies the vendor directory managed by Com-
poser’. It contains all third party libraries used by your application, includ-
ing the Yii framework. The default value is the directory represented by the
alias eapp/vendor.

You may configure this property as a directory or a path alias. When you
modify this property, make sure you also adjust the Composer configuration
accordingly.

To simplify access to this path, Yii has predefined a path alias named
@vendor for it.

enableCoreCommands This property is supported by console applications
only. It specifies whether the core commands included in the Yii release
should be enabled. The default value is true.

3.3.3 Application Events

An application triggers several events during the lifecycle of handling a re-
quest. You may attach event handlers to these events in application config-
urations as follows:

[
'on beforeRequest' => function ($event) {

/7

"https://getcomposer.org

https://getcomposer.org

64 CHAPTER 3. APPLICATION STRUCTURE

})
]

The use of the on eventName syntax is described in the Configurations section.
Alternatively, you may attach event handlers during the bootstrapping
process after the application instance is created. For example:

\Yii::$app->on(\yii\base\Application: :EVENT_BEFORE_REQUEST, function
($event) {

VS
19N

EVENT_BEFORE_REQUEST

This event is triggered before an application handles a request. The actual
event name is beforeRequest.

When this event is triggered, the application instance has been configured
and initialized. So it is a good place to insert your custom code via the
event mechanism to intercept the request handling process. For example, in
the event handler, you may dynamically set the yii\base\Application::
$language property based on some parameters.

EVENT_AFTER_REQUEST

This event is triggered after an application finishes handling a request but
before sending the response. The actual event name is afterRequest.

When this event is triggered, the request handling is completed and you
may take this chance to do some postprocessing of the request or customize
the response.

Note that the response component also triggers some events while it is
sending out response content to end users. Those events are triggered after
this event.

EVENT_BEFORE_ACTION

This event is triggered before running every controller action. The actual
event name is beforeAction.

The event parameter is an instance of yii\base\ActionEvent. An event
handler may set the yii\base\ActionEvent: :$isValid property to be false
to stop running the action. For example:

L
'on beforeAction' => function ($event) {
if (some condition) {
$event->isValid = false;
} else {
}
1,

3.3. APPLICATIONS 65

Note that the same beforeAction event is also triggered by modules and con-
trollers. Application objects are the first ones triggering this event, followed
by modules (if any), and finally controllers. If an event handler sets yii\base
\ActionEvent: :$isValid to be false, all of the subsequent events will NOT
be triggered.

EVENT_AFTER_ACTION

This event is triggered after running every controller action. The actual
event name is afterAction.

The event parameter is an instance of yii\base\ActionEvent. Through
the yiil\base\ActionEvent: :$result property, an event handler may ac-
cess or modify the action result. For example:

'on afterAction' => function ($event) {
if (some condition) {
// modify $event->result
} else {
}
},

Note that the same afterAction event is also triggered by modules and con-
trollers. These objects trigger this event in the reverse order as for that of
beforeAction. That is, controllers are the first objects triggering this event,
followed by modules (if any), and finally applications.

66

CHAPTER 3. APPLICATION STRUCTURE

3.3.4 Application Lifecycle

Entry script (index.php or yii)

Load application config | Run application

Configuration array

| EVENT_BEFORE_REQUEST |

Handle request

| Resolve request into route and parameters

{

| Create module, controller and action |

v

A
Create application instance

| prelnit() | | Run action |
| Register errar handler | S +

*’ | EVENT_AFTER_REQUEST |
| Configure application properties | *

+ | Send response to end user |
| init(} |

Exit status
| bootstrap(} |

When

| Complete request processing ‘

an entry script is being executed to handle a request, an application

will undergo the following lifecycle:

1. The entry script loads the application configuration as an array.

2. The entry script creates a new instance of the application:

preInit () is called, which configures some high priority applica-
tion properties, such as basePath.

e Register the error handler.
e Configure application properties.
e init() is called which further calls bootstrap() to run boot-

strapping components.

3. The entry script calls yii\base\Application: :run() to run the ap-
plication:

e Trigger the EVENT_BEFORE_REQUEST event.
e Handle the request: resolve the request into a route and the as-

sociated parameters; create the module, controller, and action
objects as specified by the route; and run the action.

e Trigger the EVENT_AFTER_REQUEST event.
e Send response to the end user.

3.4. APPLICATION COMPONENTS 67

4. The entry script receives the exit status from the application and com-
pletes the request processing.

3.4 Application Components

Applications are service locators. They host a set of the so-called applica-
tion components that provide different services for processing requests. For
example, the uriManager component is responsible for routing Web requests
to appropriate controllers; the db component provides DB-related services;
and so on.

Each application component has an ID that uniquely identifies itself
among other application components in the same application. You can access
an application component through the expression:

\Yii: :$app->componentID

For example, you can use \Yii::$app->db to get the DB connection, and
\Yii::$app->cache to get the primary cache registered with the application.

An application component is created the first time it is accessed through
the above expression. Any further accesses will return the same component
instance.

Application components can be any objects. You can register them by
configuring the yii\base\Application: :$components property in applica-
tion configurations. For example,

[
'components' => [
// register "cache" component using a class name
'cache' => 'yiilcaching\ApcCache',
// register "db" compoment using a configuration array
'db' => [
'class' => 'yiildb\Connection',
'dsn' => 'mysql:host=localhost;dbname=demo’,
'username' => 'root',
'password' => '',
1,
// register "search" component using an anonymous function
'search' => function () {
return new app\components\SolrService;
1,
1,
]

Info: While you can register as many application components
as you want, you should do this judiciously. Application com-
ponents are like global variables. Using too many application

68 CHAPTER 3. APPLICATION STRUCTURE

components can potentially make your code harder to test and
maintain. In many cases, you can simply create a local compon-
ent and use it when needed.

3.4.1 Bootstrapping Components

As mentioned above, an application component will only be instantiated
when it is being accessed the first time. If it is not accessed at all during
a request, it will not be instantiated. Sometimes, however, you may want
to instantiate an application component for every request, even if it is not
explicitly accessed. To do so, you may list its ID in the bootstrap property
of the application.

You can also use Closures to bootstrap customized components. Return-
ing an instantiated component is not required. A Closure can also be used
simply for running code after yii\base\Application instantiation.

For example, the following application configuration makes sure the 1log
component is always loaded:

[
'bootstrap' => [
'log',
function($app){
return new ComponentX();

},
function($app){
// some code
return;
¥
1,
'components' => [
'log' => [
// configuration for "log" component
1,
1,

3.4.2 Core Application Components

Yii defines a set of core application components with fixed IDs and default
configurations. For example, the request component is used to collect in-
formation about a user request and resolve it into a route; the db component
represents a database connection through which you can perform database
queries. It is with help of these core application components that Yii applic-
ations are able to handle user requests.

Below is the list of the predefined core application components. You may
configure and customize them like you do with normal application compon-
ents. When you are configuring a core application component, if you do not
specify its class, the default one will be used.

3.5. CONTROLLERS 69

e assetManager: manages asset bundles and asset publishing. Please
refer to the Assets section for more details.

e db: represents a database connection through which you can perform
DB queries. Note that when you configure this component, you must
specify the component class as well as other required component prop-
erties, such as yii\db\Connection::$dsn. Please refer to the Data-
base Access Objects section for more details.

e errorHandler: handles PHP errors and exceptions. Please refer to the
Handling Errors section for more details.

e formatter: formats data when they are displayed to end users. For
example, a number may be displayed with thousand separator, a date
may be formatted in long format. Please refer to the Data Formatting
section for more details.

e 118n: supports message translation and formatting. Please refer to the
Internationalization section for more details.

e log: manages log targets. Please refer to the Logging section for more
details.

e yii\swiftmailer\Mailer: supports mail composing and sending. Please
refer to the Mailing section for more details.

e response: represents the response being sent to end users. Please refer
to the Responses section for more details.

e request: represents the request received from end users. Please refer
to the Requests section for more details.

e session: represents the session information. This component is only
available in Web applications. Please refer to the Sessions and Cook-
ies section for more details.

e urlManager: supports URL parsing and creation. Please refer to the
Routing and URL Creation section for more details.

e user: represents the user authentication information. This component
is only available in Web applications. Please refer to the Authentic-
ation section for more details.

e view: supports view rendering. Please refer to the Views section for
more details.

3.5 Controllers

Controllers are part of the MVC® architecture. They are objects of classes
extending from yii\base\Controller and are responsible for processing
requests and generating responses. In particular, after taking over the control
from applications, controllers will analyze incoming request data, pass them
to models, inject model results into views, and finally generate outgoing
responses.

Shttps://en.wikipedia.org/wiki/Model%E2%80%93viewE2%80%93controller

https://en.wikipedia.org/wiki/Model%E2%80%93view%E2%80%93controller

70 CHAPTER 3. APPLICATION STRUCTURE

3.5.1 Actions

Controllers are composed of actions which are the most basic units that end
users can address and request for execution. A controller can have one or
multiple actions.

The following example shows a post controller with two actions: view and
create:
namespace app\controllers;
use Yii;
use app\models\Post;

use yii\web\Controller;
use yii\web\NotFoundHttpException;

class PostController extends Controller

{
public function actionView($id)
{
$model = Post::findOne($id);
if ($model === null) {
throw new NotFoundHttpException;
}
return $this->render('view', [
'model' => $model,
IDH
}
public function actionCreate()
{
$model = new Post;
if ($model->load(Yii: :$app->request->post()) && $model->save()) {
return $this->redirect(['view', 'id' => $model->id]);
} else {
return $this->render('create', [
'model' => $model,
DN
}
}
}

In the view action (defined by the actionview() method), the code first loads
the model according to the requested model ID; If the model is loaded suc-
cessfully, it will display it using a view named view. Otherwise, it will throw
an exception.

In the create action (defined by the actionCreate() method), the code
is similar. It first tries to populate a new instance of the model using the
request data and save the model. If both succeed it will redirect the browser
to the view action with the ID of the newly created model. Otherwise it will
display the create view through which users can provide the needed input.

3.5. CONTROLLERS 71

3.5.2 Routes

End users address actions through the so-called routes. A route is a string
that consists of the following parts:

e amodule ID: this exists only if the controller belongs to a non-application
module;

e a controller ID: a string that uniquely identifies the controller among
all controllers within the same application (or the same module if the
controller belongs to a module);

e an action ID: a string that uniquely identifies the action among all
actions within the same controller.

Routes take the following format:

ControllerID/ActionID

or the following format if the controller belongs to a module:

ModuleID/ControllerID/ActionID

So if a user requests with the URL http://hostname/index.php?r=site/index,
the index action in the site controller will be executed. For more details on
how routes are resolved into actions, please refer to the Routing and URL
Creation section.

3.5.3 Creating Controllers

In Web applications, controllers should extend from yii\web\Controller
or its child classes. Similarly in console applications, controllers should
extend from yiilconsole\Controller or its child classes. The following
code defines a site controller:

namespace app\controllers;
use yii\web\Controller;

class SiteController extends Controller
{
}

Controller IDs

Usually, a controller is designed to handle the requests regarding a particular
type of resource. For this reason, controller IDs are often nouns referring to
the types of the resources that they are handling. For example, you may use
article as the ID of a controller that handles article data.

By default, controller IDs should contain these characters only: Eng-
lish letters in lower case, digits, underscores, hyphens, and forward slashes.

72 CHAPTER 3. APPLICATION STRUCTURE

For example, article and post-comment are both valid controller IDs, while
article?, PostComment, admin\post are not.

A controller ID may also contain a subdirectory prefix. For example,
admin/article stands for an article controller in the admin subdirectory un-
der the controller namespace. Valid characters for subdirectory prefixes
include: English letters in lower and upper cases, digits, underscores, and
forward slashes, where forward slashes are used as separators for multi-level
subdirectories (e.g. panels/admin).

Controller Class Naming

Controller class names can be derived from controller IDs according to the
following procedure:

1. Turn the first letter in each word separated by hyphens into upper case.
Note that if the controller ID contains slashes, this rule only applies to
the part after the last slash in the ID.

2. Remove hyphens and replace any forward slashes with backward slashes.
3. Append the suffix Controller.

4. Prepend the controller namespace.

The following are some examples, assuming the controller namespace takes
the default value app\controllers:

article becomes app\controllers\ArticleController;

post-comment becomes app\controllers\PostCommentController;

admin/post-comment becomes app\controllers\admin\PostCommentController;

® adminPanels/post-comment becomes app\controllers\adminPanels\PostCommentController.
Controller classes must be autoloadable. For this reason, in the above ex-
amples, the article controller class should be saved in the file whose alias is
@app/controllers/ArticleController.php; while the admin/post-comment control-
ler should be in @app/controllers/admin/PostCommentController.php.

Info: The last example admin/post-comment shows how you can
put a controller under a sub-directory of the controller namespace.
This is useful when you want to organize your controllers into
several categories and you do not want to use modules.

Controller Map

You can configure the controller map to overcome the constraints of the
controller IDs and class names described above. This is mainly useful when
you are using third-party controllers and you do not have control over their
class names.

3.5. CONTROLLERS 73

You may configure the controller map in the application configuration.
For example:

[
'controllerMap' => [
// declares "account" controller using a class name
'account' => 'app\controllers\UserController',
// declares "article” controller using a configuration array
'article' => [
'class' => 'app\controllers\PostController',
'enableCsrfValidation' => false,
1,
1,
]

Default Controller

Each application has a default controller specified via the yii\base\Application
::$defaultRoute property. When a request does not specify a route, the
route specified by this property will be used. For Web applications, its
value is 'site', while for console applications, it is help. Therefore, if
a URL is http://hostname/index.php, then the site controller will handle the
request.

You may change the default controller with the following application
configuration:

[

'defaultRoute' => 'main',

]

3.5.4 Creating Actions

Creating actions can be as simple as defining the so-called action methods in
a controller class. An action method is a public method whose name starts
with the word action. The return value of an action method represents the
response data to be sent to end users. The following code defines two actions,
index and hello-world:

namespace app\controllers;
use yii\web\Controller;

class SiteController extends Controller

{
public function actionIndex()
{
return $this->render('index');

}

74 CHAPTER 3. APPLICATION STRUCTURE

public function actionHelloWorld()

{
return 'Hello World';
}
}
Action IDs

An action is often designed to perform a particular manipulation of a re-
source. For this reason, action IDs are usually verbs, such as view, update,
etc.

By default, action IDs should contain these characters only: English
letters in lower case, digits, underscores, and hyphens (you can use hyphens
to separate words). For example, view, update2, and comment-post are all valid
action IDs, while view? and Update are not.

You can create actions in two ways: inline actions and standalone ac-
tions. An inline action is defined as a method in the controller class, while a
standalone action is a class extending yii\base\Action or its child classes.
Inline actions take less effort to create and are often preferred if you have
no intention to reuse these actions. Standalone actions, on the other hand,
are mainly created to be used in different controllers or be redistributed as
extensions.

Inline Actions

Inline actions refer to the actions that are defined in terms of action methods
as we just described.

The names of the action methods are derived from action IDs according
to the following procedure:

1. Turn the first letter in each word of the action ID into upper case.
2. Remove hyphens.

3. Prepend the prefix action.
For example, index becomes actionIndex, and hello-world becomes actionHelloWorld.

Note: The names of the action methods are case-sensitive. If
you have a method named ActionIndex, it will not be considered
as an action method, and as a result, the request for the index
action will result in an exception. Also note that action methods
must be public. A private or protected method does NOT define
an inline action.

Inline actions are the most commonly defined actions because they take little
effort to create. However, if you plan to reuse the same action in different

3.5. CONTROLLERS 75

places, or if you want to redistribute an action, you should consider defining
it as a standalone action.

Standalone Actions

Standalone actions are defined in terms of action classes extending yii\base
\Action or its child classes. For example, in the Yii releases, there are yii
\web\ViewAction and yii\web\ErrorAction, both of which are standalone
actions.

To use a standalone action, you should declare it in the action map by
overriding the yii\base\Controller: :actions() method in your controller
classes like the following:

public function actions()

{
return [
// declares "error" action using a class name
'error' => 'yii\web\ErrorAction',
// declares "view" action using a configuration array
'view' => [
'class' => 'yiilweb\ViewAction',
'viewPrefix' => '',
1,
1;
}

As you can see, the actions() method should return an array whose keys are
action IDs and values the corresponding action class names or configurations.
Unlike inline actions, action IDs for standalone actions can contain arbitrary
characters, as long as they are declared in the actions() method.

To create a standalone action class, you should extend yii\base\Action
or a child class, and implement a public method named run(). The role of
the run() method is similar to that of an action method. For example,

<7php
namespace app\components;

use yii\base\Action;

class HelloWorldAction extends Action

{
public function run()
{
return "Hello World";
}

76 CHAPTER 3. APPLICATION STRUCTURE

Action Results

The return value of an action method or of the run() method of a standalone
action is significant. It stands for the result of the corresponding action.

The return value can be a response object which will be sent to the end

user as the response.

e For Web applications, the return value can also be some arbitrary
data which will be assigned to yii\web\Response: :$data and be fur-
ther converted into a string representing the response body.

e For console applications, the return value can also be an integer
representing the exit status of the command execution.

In the examples shown above, the action results are all strings which will
be treated as the response body to be sent to end users. The following
example shows how an action can redirect the user browser to a new URL
by returning a response object (because the redirect() method returns a
response object):

public function actionForward()

{
// redirect the user browser to http://example.com
return $this->redirect('http://example.com');

Action Parameters

The action methods for inline actions and the run() methods for standalone
actions can take parameters, called action parameters. Their values are
obtained from requests. For Web applications, the value of each action
parameter is retrieved from $_GET using the parameter name as the key; for
console applications, they correspond to the command line arguments.

In the following example, the view action (an inline action) has declared
two parameters: $id and $version.

namespace app\controllers;
use yii\web\Controller;

class PostController extends Controller

{
public function actionView($id, $version = null)
{
/..
}
}

The action parameters will be populated as follows for different requests:
® http://hostname/index.php?r=post/view&id=123: the $id parameter will be
filled with the value '123', while $version is still null because there is
NO version query parameter.

3.5. CONTROLLERS 7

® http://hostname/index.php?r=post/view&id=123&version=2: the $id and $version
parameters will be filled with '123' and '2', respectively.
® http://hostname/index.php?r=post/view: a yii\web\BadRequestHttpException
exception will be thrown because the required $id parameter is not
provided in the request.
® http://hostname/index.php?r=post/view&id[1=123: a yii\web\BadRequestHttpException
exception will be thrown because $id parameter is receiving an unex-
pected array value ['123'].
If you want an action parameter to accept array values, you should type-hint
it with array, like the following:

public function actionView(array $id, $version = null)
{

/7
}

Now if the request is http://hostname/index.php?r=post/view&id[]=123, the $id
parameter will take the value of ['123']. If the request is http://hostname/index.php?r=post/view&id=123,
the $id parameter will still receive the same array value because the scalar
value '123' will be automatically turned into an array.
The above examples mainly show how action parameters work for Web
applications. For console applications, please refer to the Console Commands
section for more details.

Default Action

Each controller has a default action specified via the yii\base\Controller
::$defaultAction property. When a route contains the controller ID only,
it implies that the default action of the specified controller is requested.

By default, the default action is set as index. If you want to change the
default value, simply override this property in the controller class, like the
following;:

namespace app\controllers;
use yii\web\Controller;

class SiteController extends Controller
{
public $defaultAction = 'home';

public function actionHome ()
{
return $this->render('home');

}

78

CHAPTER 3. APPLICATION STRUCTURE

3.5.5 Controller Lifecycle

When processing a request, an application will create a controller based on
the requested route. The controller will then undergo the following lifecycle
to fulfill the request:

1.

The yii\base\Controller::init() method is called after the con-
troller is created and configured.

The controller creates an action object based on the requested action
ID:

e If the action ID is not specified, the default action ID will be
used.

e If the action ID is found in the action map, a standalone action
will be created;

e If the action ID is found to match an action method, an inline
action will be created;

e Otherwise an yii\base\InvalidRouteException exception will
be thrown.

The controller sequentially calls the beforeAction() method of the ap-
plication, the module (if the controller belongs to a module), and the
controller.

e Ifone of the calls returns faise, the rest of the uncalled beforeAction()
methods will be skipped and the action execution will be can-
celled.

e By default, each beforeAction() method call will trigger a beforeAction
event to which you can attach a handler.

The controller runs the action.
e The action parameters will be analyzed and populated from the

request data.

The controller sequentially calls the atterAction() method of the con-
troller, the module (if the controller belongs to a module), and the
application.

e By default, each afterAction() method call will trigger an afterAction
event to which you can attach a handler.

6. The application will take the action result and assign it to the response.

3.5.6 Best Practices

In a well-designed application, controllers are often very thin, with each
action containing only a few lines of code. If your controller is rather com-

3.6. MODELS 79

plicated, it usually indicates that you should refactor it and move some code
to other classes.
Here are some specific best practices. Controllers
e may access the request data;
e may call methods of models and other service components with request
data;
e may use views to compose responses;
e should NOT process the request data - this should be done in the model
layer;
e should avoid embedding HTML or other presentational code - this is
better done in views.

3.6 Models

Models are part of the MVC? architecture. They are objects representing
business data, rules and logic.
You can create model classes by extending yii\base\Model or its child
classes. The base class yii\base\Model supports many useful features:
e Attributes: represent the business data and can be accessed like normal
object properties or array elements;
e Attribute labels: specify the display labels for attributes;
e Massive assignment: supports populating multiple attributes in a single
step;
e Validation rules: ensures input data based on the declared validation
rules;
e Data Exporting: allows model data to be exported in terms of arrays
with customizable formats.
The Model class is also the base class for more advanced models, such as
Active Record. Please refer to the relevant documentation for more details
about these advanced models.

Info: You are not required to base your model classes on yii
\base\Model. However, because there are many Yii components
built to support yii\base\Model, it is usually the preferable base
class for a model.

3.6.1 Attributes

Models represent business data in terms of attributes. Each attribute is like
a publicly accessible property of a model. The method yii\base\Model: :
attributes () specifies what attributes a model class has.

You can access an attribute like accessing a normal object property:

‘https://en.wikipedia.org/wiki/Model%E2%80%93viewE2%80%93controller

https://en.wikipedia.org/wiki/Model%E2%80%93view%E2%80%93controller

80 CHAPTER 3. APPLICATION STRUCTURE

$model = new \app\models\ContactForm;

// "name" is an attribute of ContactForm
$model->name = 'example';
echo $model->name;

You can also access attributes like accessing array elements, thanks to the
support for ArrayAccess'? and Traversable!! by yii\base\Model:

$model = new \app\models\ContactForm;

// accessing attributes like array elements
$model['name'] = 'example';
echo $model['name'];

// Model is traversable using foreach.
foreach ($model as $name => $value) {
echo "$name: $value\n";

}

Defining Attributes

By default, if your model class extends directly from yii\base\Model, all
its mon-static public member variables are attributes. For example, the
ContactForm model class below has four attributes: name, email, subject and
body. The ContactForm model is used to represent the input data received
from an HTML form.

namespace app\models;
use yii\base\Model;

class ContactForm extends Model

{
public $name;
public $email;
public $subject;
public $body;

}

You may override yii\base\Model: :attributes() to define attributes in a
different way. The method should return the names of the attributes in a
model. For example, yii\db\ActiveRecord does so by returning the column
names of the associated database table as its attribute names. Note that you
may also need to override the magic methods such as __get(), __set() so that
the attributes can be accessed like normal object properties.

Ohttps://www.php.net/manual/en/class.arrayaccess.php
"https://wuw.php.net/manual/en/class.traversable.php

https://www.php.net/manual/en/class.arrayaccess.php
https://www.php.net/manual/en/class.traversable.php

3.6. MODELS 81

Attribute Labels

When displaying values or getting input for attributes, you often need to dis-
play some labels associated with attributes. For example, given an attribute
named firstName, you may want to display a label First Name which is more
user-friendly when displayed to end users in places such as form inputs and
€ITor Messages.
You can get the label of an attribute by calling yii\base\Model: :getAttributeLabel().
For example,

$model = new \app\models\ContactForm;

// displays "Name"
echo $model->getAttributelLabel('name');

By default, attribute labels are automatically generated from attribute names.
The generation is done by the method yii\base\Model: :generateAttributeLabel().
It will turn camel-case variable names into multiple words with the first let-
ter in each word in upper case. For example, username becomes Username, and
firstName becomes First Name.
If you do not want to use automatically generated labels, you may over-
ride yiil\base\Model: :attributeLabels() to explicitly declare attribute
labels. For example,

namespace app\models;
use yii\base\Model;

class ContactForm extends Model

{
public $name;
public $email;
public $subject;
public $body;
public function attributelLabels()
{
return [
'name' => 'Your name',
'email' => 'Your email address',
'subject' => 'Subject',
'body' => 'Content',
1;
}
}

For applications supporting multiple languages, you may want to translate
attribute labels. This can be done in the attributeLabels() method as
well, like the following:

82 CHAPTER 3. APPLICATION STRUCTURE

public function attributeLabels()

{
return [
'name' => \Yii::t('app', 'Your name'),
'email' => \Yii::t('app', 'Your email address'),
'subject' => \Yii::t('app', 'Subject'),
'body' => \Yii::t('app', 'Content'),
1;
}

You may even conditionally define attribute labels. For example, based on
the scenario the model is being used in, you may return different labels for
the same attribute.

Info: Strictly speaking, attribute labels are part of views. But
declaring labels in models is often very convenient and can result
in very clean and reusable code.

3.6.2 Scenarios

A model may be used in different scenarios. For example, a User model
may be used to collect user login inputs, but it may also be used for the
user registration purpose. In different scenarios, a model may use different
business rules and logic. For example, the email attribute may be required
during user registration, but not so during user login.

A model uses the yii\base\Model: :$scenario property to keep track
of the scenario it is being used in. By default, a model supports only a single
scenario named default. The following code shows two ways of setting the
scenario of a model:

// scenario is set as a property
$model = new User;
$model->scenario = User::SCENARIO_LOGIN;

// scenario is set through configuration
$model = new User(['scenario' => User::SCENARIO_LOGIN]);

By default, the scenarios supported by a model are determined by the valid-
ation rules declared in the model. However, you can customize this behavior
by overriding the yii\base\Model: :scenarios() method, like the follow-
ing:

namespace app\models;
use yii\db\ActiveRecord;
class User extends ActiveRecord

{
const SCENARIO_LOGIN = 'login';

3.6. MODELS 83

const SCENARIO_REGISTER = 'register';

public function scenarios()

{
return [
self::SCENARIO_LOGIN => ['username', 'password'],
self::SCENARIO_REGISTER => ['username', 'email', 'password'],
1
}

Info: In the above and following examples, the model classes
are extending from yii\db\ActiveRecord because the usage of
multiple scenarios usually happens to Active Record classes.

The scenarios() method returns an array whose keys are the scenario names
and values the corresponding active attributes. An active attribute can be
massively assigned and is subject to validation. In the above example, the
username and password attributes are active in the login scenario; while in the
register scenario, email is also active besides username and password.

The default implementation of scenarios() will return all scenarios found
in the validation rule declaration method yii\base\Model: :rules(). When
overriding scenarios (), if you want to introduce new scenarios in addition to
the default ones, you may write code like the following:

namespace app\models;
use yii\db\ActiveRecord;

class User extends ActiveRecord

{
const SCENARIO_LOGIN = 'login';
const SCENARIO_REGISTER = 'register';
public function scenarios()
{
$scenarios = parent::scenarios();
$scenarios[self: :SCENARIO_LOGIN] = ['username', 'password'];
$scenarios[self: :SCENARIO_REGISTER] = ['username', 'email',
'password'];
return $scenarios;
}
}

The scenario feature is primarily used by validation and massive attribute
assignment. You can, however, use it for other purposes. For example, you
may declare attribute labels differently based on the current scenario.

84 CHAPTER 3. APPLICATION STRUCTURE

3.6.3 Validation Rules

When the data for a model is received from end users, it should be validated
to make sure it satisfies certain rules (called walidation rules, also known
as business rules). For example, given a ContactForm model, you may want
to make sure all attributes are not empty and the email attribute contains
a valid email address. If the values for some attributes do not satisfy the
corresponding business rules, appropriate error messages should be displayed
to help the user to fix the errors.

You may call yii\base\Model::validate() to validate the received
data. The method will use the validation rules declared in yii\base\Model
::rules() to validate every relevant attribute. If no error is found, it will
return true. Otherwise, it will keep the errors in the yii\base\Model::
$errors property and return false. For example,

$model = new \app\models\ContactForm;

// populate model attributes with user inputs
$model->attributes = \Yii::$app->request->post('ContactForm');

if ($model->validate()) {
// all inputs are valid

} else {
// walidation fatled: $errors is an array containing error messages
$errors = $model->errors;

To declare validation rules associated with a model, override the yii\base
\Model: :rules() method by returning the rules that the model attributes
should satisfy. The following example shows the validation rules declared for
the ContactForm model:

public function rules()

{
return [
// the name, ematil, subject and body attributes are required
[['name', 'email', 'subject', 'body'l, 'required'],
// the email attribute should be a valid email address
['email', 'email'],
1
}

A rule can be used to validate one or multiple attributes, and an attribute
may be validated by one or multiple rules. Please refer to the Validating
Input section for more details on how to declare validation rules.

Sometimes, you may want a rule to be applied only in certain scenarios.
To do so, you can specify the on property of a rule, like the following:

3.6. MODELS 85

public function rules()

{
return [
// username, ematil and password are all required in "register”
scenartio
[['username', 'email', 'password'], 'required', 'on' =>
self::SCENARIO_REGISTER],
// username and password are required in "login" scenario
[['username', 'password'], 'required', 'on' =>
self::SCENARIO_LOGIN],
1;
}

If you do not specify the on property, the rule would be applied in all scen-
arios. A rule is called an active rule if it can be applied in the current
scenario.

An attribute will be validated if and only if it is an active attribute
declared in scenarios() and is associated with one or multiple active rules
declared in rules().

3.6.4 Massive Assignment

Massive assignment is a convenient way of populating a model with user
inputs using a single line of code. It populates the attributes of a model
by assigning the input data directly to the yii\base\Model: :$attributes
property. The following two pieces of code are equivalent, both trying to as-
sign the form data submitted by end users to the attributes of the ContactForm
model. Clearly, the former, which uses massive assignment, is much cleaner
and less error prone than the latter:

$model = new \app\models\ContactForm;
$model->attributes = \Yii::$app->request->post('ContactForm');

$model = new \app\models\ContactForm;

$data = \Yii::$app->request->post('ContactForm', [1);

$model->name = isset($datal'name']) 7 $datal'name'] : null;
$model->email = isset($datal'email']) 7 $datal['email'] : null;
$model->subject = isset($datal'subject']) 7 $datal'subject'] : null;
$model->body = isset($datal'body']) ? $datal'body'] : null;

Safe Attributes

Massive assignment only applies to the so-called safe attributes which are the
attributes listed in yii\base\Model: :scenarios() for the current scenario
of a model. For example, if the User model has the following scenario declar-
ation, then when the current scenario is login, only the username and password
can be massively assigned. Any other attributes will be kept untouched.

86 CHAPTER 3. APPLICATION STRUCTURE

public function scenarios()

{
return [
self::SCENARIO_LOGIN => ['username', 'password'],
self::SCENARIO_REGISTER => ['username', 'email', 'password'],
1
}

Info: The reason that massive assignment only applies to safe
attributes is because you want to control which attributes can be
modified by end user data. For example, if the User model has
a permission attribute which determines the permission assigned
to the user, you would like this attribute to be modifiable by
administrators through a backend interface only.

Because the default implementation of yii\base\Model: :scenarios() will
return all scenarios and attributes found in yii\base\Model: :rules(), if
you do not override this method, it means an attribute is safe as long as it
appears in one of the active validation rules.

For this reason, a special validator aliased safe is provided so that you can
declare an attribute to be safe without actually validating it. For example,
the following rules declare that both title and description are safe attributes.

public function rules()
{
return [
[['title', 'description'], 'safe'l],
1;

Unsafe Attributes

As described above, the yii\base\Model: :scenarios() method serves for
two purposes: determining which attributes should be validated, and de-
termining which attributes are safe. In some rare cases, you may want to
validate an attribute but do not want to mark it safe. You can do so by
prefixing an exclamation mark ! to the attribute name when declaring it in
scenarios (), like the secret attribute in the following:

public function scenarios()
{

return [
self::SCENARIO_LOGIN => ['username', 'password', '!secret'],
1;
}

When the model is in the 1ogin scenario, all three attributes will be validated.
However, only the username and password attributes can be massively assigned.
To assign an input value to the secret attribute, you have to do it explicitly
as follows,

3.6. MODELS 87

$model->secret = $secret;

The same can be done in rules() method:

public function rules()
{
return [
[['username', 'password', '!secret'], 'required', 'on' => 'login']
1
}

In this case attributes username, password and secret are required, but secret
must be assigned explicitly.

3.6.5 Data Exporting

Models often need to be exported in different formats. For example, you
may want to convert a collection of models into JSON or Excel format. The
exporting process can be broken down into two independent steps:

e models are converted into arrays;

e the arrays are converted into target formats.
You may just focus on the first step, because the second step can be achieved
by generic data formatters, such as yii\web\JsonResponseFormatter.

The simplest way of converting a model into an array is to use the yii
\base\Model: :$attributes property. For example,

$post = \app\models\Post::findOne(100);
$array = $post->attributes;

By default, the yii\base\Model: :$attributes property will return the val-
ues of all attributes declared in yii\base\Model: :attributes().

A more flexible and powerful way of converting a model into an array is
to use the yii\base\Model: :toArray() method. Its default behavior is the
same as that of yii\base\Model::$attributes. However, it allows you to
choose which data items, called fields, to be put in the resulting array and
how they should be formatted. In fact, it is the default way of exporting
models in RESTful Web service development, as described in the Response
Formatting.

Fields

A field is simply a named element in the array that is obtained by calling
the yii\base\Model: :toArray () method of a model.

By default, field names are equivalent to attribute names. However, you
can change this behavior by overriding the fields() and/or extraFields ()
methods. Both methods should return a list of field definitions. The fields
defined by fields() are default fields, meaning that toArray () will return these

88 CHAPTER 3. APPLICATION STRUCTURE

fields by default. The extraFields() method defines additionally available
fields which can also be returned by toArray() as long as you specify them
via the $expand parameter. For example, the following code will return all
fields defined in fields() and the prettyName and fullAddress fields if they are
defined in extraFields().

$array = $model->toArray([], ['prettyName', 'fullAddress']);

You can override fields() to add, remove, rename or redefine fields. The
return value of fields() should be an array. The array keys are the field
names, and the array values are the corresponding field definitions which
can be either property/attribute names or anonymous functions returning
the corresponding field values. In the special case when a field name is the
same as its defining attribute name, you can omit the array key. For example,

// explicitly list every field, best used when you want to make sure the
changes

// in your DB table or model attributes do not cause your field changes (to
keep API backward compatibility).

public function fields()

{
return [
// field name is the same as the attribute name
rid',
// field name is "ematl", the corresponding attribute name s
"email_address"
'email' => 'email_address',
// field name is "name", its value is defined by a PHP callback
'name' => function () {
return $this->first_name . ' ' . $this->last_name;
1,
1;
}

// filter out some fields, best used when you want to inherit the parent
tmplementation

// and exzclude some sensitive fields.

public function fields()

{
$fields = parent::fields();
// remove fields that contain sensitive information
unset ($fields['auth_key'], $fields['password_hash'],
$fields['password_reset_token']);
return $fields;

}

Warning: Because by default all attributes of a model will be
included in the exported array, you should examine your data

3.6. MODELS 89

to make sure they do not contain sensitive information. If there
is such information, you should override fields() to filter them
out. In the above example, we choose to filter out auth_key,

password_hash and.password_reset_token.

3.6.6 Best Practices

Models are the central places to represent business data, rules and logic.
They often need to be reused in different places. In a well-designed applica-
tion, models are usually much fatter than controllers.

In summary, models

e may contain attributes to represent business data;

e may contain validation rules to ensure the data validity and integrity;

e may contain methods implementing business logic;

e should NOT directly access request, session, or any other environ-
mental data. These data should be injected by controllers into models;

e should avoid embedding HTML or other presentational code - this is
better done in views;

e avoid having too many scenarios in a single model.

You may usually consider the last recommendation above when you are de-
veloping large complex systems. In these systems, models could be very fat
because they are used in many places and may thus contain many sets of
rules and business logic. This often ends up in a nightmare in maintaining
the model code because a single touch of the code could affect several differ-
ent places. To make the model code more maintainable, you may take the
following strategy:

e Define a set of base model classes that are shared by different applica-
tions or modules. These model classes should contain minimal sets of
rules and logic that are common among all their usages.

e In each application or module that uses a model, define a concrete
model class by extending from the corresponding base model class.
The concrete model classes should contain rules and logic that are
specific for that application or module.

For example, in the Advanced Project Template!?, you may define a base
model class common\models\Post. Then for the front end application, you
define and use a concrete model class frontend\models\Post which extends
from common\models\Post. And similarly for the back end application, you
define backend\models\Post. With this strategy, you will be sure that the code
in frontend\models\Post is only specific to the front end application, and if
you make any change to it, you do not need to worry if the change may
break the back end application.

2https://github.com/yiisoft/yii2-app-advanced/blob/master/docs/guide/
README . md

https://github.com/yiisoft/yii2-app-advanced/blob/master/docs/guide/README.md
https://github.com/yiisoft/yii2-app-advanced/blob/master/docs/guide/README.md

90 CHAPTER 3. APPLICATION STRUCTURE

3.7 Views

Views are part of the MVC!? architecture. They are code responsible for
presenting data to end users. In a Web application, views are usually created
in terms of wview templates which are PHP script files containing mainly
HTML code and presentational PHP code. They are managed by the view
application component which provides commonly used methods to facilitate
view composition and rendering. For simplicity, we often call view templates
or view template files as views.

3.7.1 Creating Views

As aforementioned, a view is simply a PHP script mixed with HTML and
PHP code. The following is the view that presents a login form. As you can
see, PHP code is used to generate the dynamic content, such as the page title
and the form, while HTML code organizes them into a presentable HTML

page.

<7php
use yii\helpers\Html;
use yii\widgets\ActiveForm;

/* Quar $this yii\web\View */
/* Q@uar $form yiti\widgets\AdctiveForm */
/* Quar $model app\models\LoginForm */

$this->title = 'Login';
2>
<h1><?= Html::encode($this->title) 2></h1>

<p>Please fill out the following fields to login:</p>

<?php $form = ActiveForm::begin(); 2>
<?= $form->field($model, 'username') ?>
<?= $form->field($model, 'password')->passwordInput() 2>
<?= Html::submitButton('Login') 2>

<?php ActiveForm::end(); ?>

Within a view, you can access $this which refers to the view component
managing and rendering this view template.

Besides $this, there may be other predefined variables in a view, such
as $model in the above example. These variables represent the data that are
pushed into the view by controllers or other objects which trigger the view
rendering.

Tip: The predefined variables are listed in a comment block at
beginning of a view so that they can be recognized by IDEs. It
is also a good way of documenting your views.

Bhttps://en.wikipedia.org/wiki/Model%E2%80%93view}E2%80%93controller

https://en.wikipedia.org/wiki/Model%E2%80%93view%E2%80%93controller

3.7. VIEWS 91

Security

When creating views that generate HTML pages, it is important that you
encode and/or filter the data coming from end users before presenting them.
Otherwise, your application may be subject to cross-site scripting'# attacks.

To display a plain text, encode it first by calling yii\helpers\Html: :
encode(). For example, the following code encodes the user name before
displaying it:

<7php
use yii\helpers\Html;
2>

<div class="username">
<?= Html::encode($user->name) 2>
</div>

To display HTML content, use yii\helpers\HtmlPurifier to filter the con-
tent first. For example, the following code filters the post content before
displaying it:

<7php
use yii\helpers\HtmlPurifier;
2>

<div class="post">
<?= HtmlPurifier: :process($post->text) 2>
</div>

Tip: While HTMLPurifier does excellent job in making output
safe, it is not fast. You should consider caching the filtering result
if your application requires high performance.

Organizing Views

Like controllers and models, there are conventions to organize views.

e For views rendered by a controller, they should be put under the dir-
ectory @app/views/ControllerID by default, where ControllerID refers to
the controller ID. For example, if the controller class is PostController,
the directory would be @app/views/post; if it is PostCommentController,
the directory would be @app/views/post-comment. In case the controller
belongs to a module, the directory would be views/ControllerID under
the module directory.

e For views rendered in a widget, they should be put under the widgetPath/views
directory by default, where widgetPath stands for the directory contain-
ing the widget class file.

Yhttps://en.wikipedia.org/wiki/Cross-site_scripting

https://en.wikipedia.org/wiki/Cross-site_scripting

92 CHAPTER 3. APPLICATION STRUCTURE

e For views rendered by other objects, it is recommended that you follow
the similar convention as that for widgets.

You may customize these default view directories by overriding the yii\base

\ViewContextInterface: :getViewPath() method of controllers or widgets.

3.7.2 Rendering Views

You can render views in controllers, widgets, or any other places by calling
view rendering methods. These methods share a similar signature shown as
follows,

/*%

* Qparam string $view view name or file path, depending on the actual
rendering method

* Q@param array $params the data to be passed to the view

* Q@return string rendering result

*/

methodName ($view, $params = [])

Rendering in Controllers

Within controllers, you may call the following controller methods to render
views:

e render(): renders a named view and applies a layout to the rendering
result.

e renderPartial(): renders a named view without any layout.

e renderAjax(): renders a named view without any layout, and injects
all registered JS/CSS scripts and files. It is usually used in response
to AJAX Web requests.

e renderFile(): renders a view specified in terms of a view file path or
alias.

e renderContent(): renders a static string by embedding it into the
currently applicable layout. This method is available since version
2.0.1.

For example,

namespace app\controllers;

use Yii;

use app\models\Post;

use yii\web\Controller;

use yii\web\NotFoundHttpException;

class PostController extends Controller
{
public function actionView($id)
{
$model = Post::findOne($id);
if ($model === null) {

3.7. VIEWS 93

throw new NotFoundHttpException;
}

// renders a view named "view" and applies a layout to it
return $this->render('view', [
'model' => $model,

D;

Rendering in Widgets

Within widgets, you may call the following widget methods to render views.
e render (): renders a named view.
e renderFile(): renders a view specified in terms of a view file path or
alias.
For example,

namespace app\components;

use yii\base\Widget;
use yii\helpers\Html;

class ListWidget extends Widget

{
public $items = [];
public function run()
{
// renders a view named "list"
return $this->render('list', [
'items' => $this->items,
DN
}
}

Rendering in Views

You can render a view within another view by calling one of the following
methods provided by the view component:
e render(): renders a named view.
e renderAjax(): renders a named view and injects all registered JS/CSS
scripts and files. It is usually used in response to AJAX Web requests.
e renderFile(): renders a view specified in terms of a view file path or
alias.
For example, the following code in a view renders the _overview.php view
file which is in the same directory as the view being currently rendered.
Remember that $this in a view refers to the view component:

<?= $this->render (' _overview') 2>

94 CHAPTER 3. APPLICATION STRUCTURE

Rendering in Other Places

In any place, you can get access to the view application component by the ex-
pression Yii::$app->view and then call its aforementioned methods to render
a view. For example,

// displays the view file "G@app/views/site/license.php”
echo \Yii::$app->view->renderFile('Qapp/views/site/license.php');

Named Views

When you render a view, you can specify the view using either a view name
or a view file path/alias. In most cases, you would use the former because it
is more concise and flexible. We call views specified using names as named
Views.

A view name is resolved into the corresponding view file path according

to the following rules:

e A view name may omit the file extension name. In this case, .php will be
used as the extension. For example, the view name about corresponds
to the file name about . php.

e If the view name starts with double slashes //, the corresponding view
file path would be eapp/views/ViewName. That is, the view is looked for
under the application’s view path. For example, //site/about will
be resolved into @app/views/site/about.php.

e If the view name starts with a single slash /, the view file path is formed
by prefixing the view name with the view path of the currently active
module. If there is no active module, @app/views/ViewName will be used.
For example, /user/create will be resolved into @app/modules/user/views/user/create.php,
if the currently active module is user. If there is no active module, the
view file path would be eapp/views/user/create.php.

e [f the view is rendered with a context and the context implements yii
\base\ViewContextInterface, the view file path is formed by prefix-
ing the view path of the context to the view name. This mainly applies
to the views rendered within controllers and widgets. For example,
about will be resolved into eapp/views/site/about.php if the context is
the controller SiteController.

o If a view is rendered within another view, the directory containing
the other view file will be prefixed to the new view name to form
the actual view file path. For example, item will be resolved into
@app/views/post/item.php if it is being rendered in the view @app/views/post/index.php.

According to the above rules, calling $this->render('view') in a controller
app\controllers\PostController will actually render the view file eapp/views/post/view.php,
while calling $this->render('_overview') in that view will render the view file
Qapp/views/post/_overview.php.

3.7. VIEWS 95

Accessing Data in Views

There are two approaches to access data within a view: push and pull.

By passing the data as the second parameter to the view rendering meth-
ods, you are using the push approach. The data should be represented as
an array of name-value pairs. When the view is being rendered, the PHP
extract() function will be called on this array so that the array is extracted
into variables in the view. For example, the following view rendering code
in a controller will push two variables to the report view: $foo = 1 and $bar
= 2.

echo $this->render('report', [
'foo' => 1,
'bar' => 2,

D;

The pull approach actively retrieves data from the view component or other
objects accessible in views (e.g. Yii::$app). Using the code below as an
example, within the view you can get the controller object by the expression
$this->context. And as a result, it is possible for you to access any properties
or methods of the controller in the report view, such as the controller 1D
shown in the following:

The controller ID is: <?7= $this->context->id 2>

The push approach is usually the preferred way of accessing data in views,
because it makes views less dependent on context objects. Its drawback is
that you need to manually build the data array all the time, which could
become tedious and error prone if a view is shared and rendered in different
places.

Sharing Data among Views

The view component provides the params property that you can use to share
data among views.

For example, in an about view, you can have the following code which
specifies the current segment of the breadcrumbs.

$this->params['breadcrumbs'][] = 'About Us';

Then, in the layout file, which is also a view, you can display the breadcrumbs
using the data passed along params:

<?7= yii\widgets\Breadcrumbs: :widget ([
'links' => isset($this->params['breadcrumbs']) ?
$this->params['breadcrumbs'] : [],

AP

96 CHAPTER 3. APPLICATION STRUCTURE

3.7.3 Layouts

Layouts are a special type of views that represent the common parts of
multiple views. For example, the pages for most Web applications share the
same page header and footer. While you can repeat the same page header
and footer in every view, a better way is to do this once in a layout and
embed the rendering result of a content view at an appropriate place in the
layout.

Creating Layouts

Because layouts are also views, they can be created in the similar way as nor-
mal views. By default, layouts are stored in the directory eapp/views/layouts.
For layouts used within a module, they should be stored in the views/layouts
directory under the module directory. You may customize the default lay-
out directory by configuring the yii\base\Module: : $layoutPath property
of the application or modules.

The following example shows how a layout looks like. Note that for
illustrative purpose, we have greatly simplified the code in the layout. In
practice, you may want to add more content to it, such as head tags, main
menu, etc.

<7php
use yii\helpers\Html;

/* Q@uar $this yit\web\View */

/* @uar $content string */

2>

<?php $this->beginPage() ?>

<!DOCTYPE html>

<html lang="en">

<head>
<meta charset="UTF-8"/>
<?= Html::csrfMetaTags() 2>
<title><?= Html::encode($this->title) 2></title>
<?php $this->head() 2>

</head>

<body>

<?php $this->beginBody() 2>
<header>My Company</header>
<?= $content ?>
<footer>© 2014 by My Company</footer>

<?php $this->endBody() 2>

</body>

</html>

<?php $this->endPage() 2>

As you can see, the layout generates the HTML tags that are common to
all pages. Within the <vody> section, the layout echoes the $content variable

3.7. VIEWS 97

which represents the rendering result of content views and is pushed into the
layout when yii\base\Controller: :render() is called.

Most layouts should call the following methods like shown in the above
code. These methods mainly trigger events about the rendering process so
that scripts and tags registered in other places can be properly injected into
the places where these methods are called.

e beginPage(): This method should be called at the very beginning of
the layout. It triggers the EVENT_BEGIN_PAGE event which indicates
the beginning of a page.

e endPage(): This method should be called at the end of the layout. It
triggers the EVENT_END_PAGE event which indicates the end of a page.

e head(): This method should be called within the <head> section of an
HTML page. It generates a placeholder which will be replaced with
the registered head HTML code (e.g. link tags, meta tags) when a
page finishes rendering.

e beginBody(): This method should be called at the beginning of the
<body> section. It triggers the EVENT_BEGIN_BODY event and generates
a placeholder which will be replaced by the registered HTML code (e.g.
JavaScript) targeted at the body begin position.

e endBody(): This method should be called at the end of the <body> sec-
tion. It triggers the EVENT_END_BODY event and generates a placeholder
which will be replaced by the registered HTML code (e.g. JavaScript)
targeted at the body end position.

Accessing Data in Layouts

Within a layout, you have access to two predefined variables: $this and
$content. The former refers to the view component, like in normal views,
while the latter contains the rendering result of a content view which is
rendered by calling the render () method in controllers.

If you want to access other data in layouts, you have to use the pull
method as described in the Accessing Data in Views subsection. If you want
to pass data from a content view to a layout, you may use the method
described in the Sharing Data among Views subsection.

Using Layouts

As described in the Rendering in Controllers subsection, when you render a
view by calling the render () method in a controller, a layout will be applied
to the rendering result. By default, the layout eapp/views/layouts/main.php
will be used.

You may use a different layout by configuring either yii\base\Application
: :$layout or yii\base\Controller: :$layout. The former governs the lay-
out used by all controllers, while the latter overrides the former for individual

98 CHAPTER 3. APPLICATION STRUCTURE

controllers. For example, the following code makes the post controller to use
@app/views/layouts/post.php as the layout when rendering its views. Other
controllers, assuming their layout property is untouched, will still use the
default @app/views/layouts/main.php as the layout.

namespace app\controllers;
use yii\web\Controller;

class PostController extends Controller

{
public $layout = 'post';

/7

For controllers belonging to a module, you may also configure the module’s
layout property to use a particular layout for these controllers.

Because the 1ayout property may be configured at different levels (control-
lers, modules, application), behind the scene Yii takes two steps to determine
what is the actual layout file being used for a particular controller.

In the first step, it determines the layout value and the context module:

e If the yii\base\Controller::$layout property of the controller is
not null, use it as the layout value and the module of the controller as
the context module.

e [f the yii\base\Controller: :$layout property of the controller is
null, search through all ancestor modules (including the application
itself) of the controller and find the first module whose layout property
is not nu1l. Use that module and its layout value as the context
module and the chosen layout value. If such a module cannot be found,
it means no layout will be applied.

In the second step, it determines the actual layout file according to the layout
value and the context module determined in the first step. The layout value
can be:

e a path alias Gig. @app/views/layouts/main)

e an absolute path (e.g. /main): the layout value starts with a slash.
The actual layout file will be looked for under the application’s layout
path which defaults to eapp/views/layouts.

e arelative path (e.g. main): the actual layout file will be looked for under
the context module’s layout path which defaults to the views/layouts
directory under the module directory.

e the boolean value false: no layout will be applied.

If the layout value does not contain a file extension, it will use the default
one .php.

3.7. VIEWS 99

Nested Layouts

Sometimes you may want to nest one layout in another. For example, in
different sections of a Web site, you want to use different layouts, while all
these layouts share the same basic layout that generates the overall HTML5
page structure. You can achieve this goal by calling beginContent () and
endContent () in the child layouts like the following:

<7php $this->beginContent ('Qapp/views/layouts/base.php'); 2>
...child layout content here...

<?php $this->endContent(); 2>

As shown above, the child layout content should be enclosed within beginContent ()
and endContent (). The parameter passed to beginContent () specifies what
is the parent layout. It can be either a layout file or alias.

Using the above approach, you can nest layouts in more than one levels.

Using Blocks

Blocks allow you to specify the view content in one place while displaying
it in another. They are often used together with layouts. For example, you
can define a block in a content view and display it in the layout.

You call beginBlock() and endBlock() to define a block. The block
can then be accessed via $view->blocks[$blockID], where $blockID stands for
a unique ID that you assign to the block when defining it.

The following example shows how you can use blocks to customize specific
parts of a layout in a content view.

First, in a content view, define one or multiple blocks:

<7php $this->beginBlock('blockl'); 2>
...content of blockl...

<?php $this->endBlock(); 2>

<?php $this->beginBlock('block3'); 2>
...content of block3...

<?php $this->endBlock(); 2>

Then, in the layout view, render the blocks if they are available, or display
some default content if a block is not defined.

100 CHAPTER 3. APPLICATION STRUCTURE

<7php if (isset($this->blocks['block1'])): 2>
<?= $this->blocks['blockl'] 2>
<?php else: 2>
. default content for blockl ...
<?php endif; ?>

<?php if (isset($this->blocks['block2'])): 2>
<?= $this->blocks['block2'] 2>
<?php else: ?>
. default content for block2 ...
<?php endif; ?>

<?php if (isset($this->blocks['block3'])): 2>
<?= $this->blocks['block3'] 2>
<?php else: ?>
. default content for block3 ...
<?php endif; 2>

3.7.4 Using View Components

View components provides many view-related features. While you can get
view components by creating individual instances of yii\base\View or its
child class, in most cases you will mainly use the view application compon-
ent. You can configure this component in application configurations like the
following:

L
/).
'components' => [
'view' => [
'class' => 'app\components\View',
1,
/).
1,
]

View components provide the following useful view-related features, each
described in more details in a separate section:
e theming: allows you to develop and change the theme for your Web
site.
e fragment caching: allows you to cache a fragment within a Web page.
e client script handling: supports CSS and JavaScript registration and
rendering.
e asset bundle handling: supports registering and rendering of asset
bundles.

3.7. VIEWS 101

e alternative template engines: allows you to use other template engines,
such as Twig!®, Smarty'©.

You may also frequently use the following minor yet useful features when
you are developing Web pages.

Setting Page Titles

Every Web page should have a title. Normally the title tag is being displayed
in a layout. However, in practice the title is often determined in content
views rather than layouts. To solve this problem, yii\web\View provides
the title property for you to pass the title information from content views
to layouts.

To make use of this feature, in each content view, you can set the page
title like the following;:

<7php
$this->title = 'My page title';
2>

Then in the layout, make sure you have the following code in the <head>
section:

<title><?= Html::encode($this->title) ?></title>

Registering Meta Tags

Web pages usually need to generate various meta tags needed by different
parties. Like page titles, meta tags appear in the <head> section and are
usually generated in layouts.

If you want to specify what meta tags to generate in content views,
you can call yii\web\View: :registerMetaTag() in a content view, like the
following:

<7php

$this->registerMetaTag(['name' => 'keywords', 'content' => 'yii, framework,
php'1);

2>

The above code will register a “keywords” meta tag with the view component.
The registered meta tag is rendered after the layout finishes rendering. The
following HTML code will be generated and inserted at the place where you
call yii\web\View: :head() in the layout:

<meta name="keywords" content="yii, framework, php">

https://twig. symfony. com/
https://wuw.smarty.net/

https://twig.symfony.com/
https://www.smarty.net/

102 CHAPTER 3. APPLICATION STRUCTURE

Note that if you call yii\web\View: :registerMetaTag() multiple times, it
will register multiple meta tags, regardless whether the meta tags are the
same or not.

To make sure there is only a single instance of a meta tag type, you can
specify a key as a second parameter when calling the method. For example,
the following code registers two “description” meta tags. However, only the
second one will be rendered.

$this->registerMetaTag(['name' => 'description', 'content' => 'This is my
cool website made with Yii!'], 'description');
$this->registerMetaTag(['name' => 'description', 'content' => 'This website
is about funny raccoons.'], 'description');

Registering Link Tags

Like meta tags, link tags are useful in many cases, such as customizing
favicon, pointing to RSS feed or delegating OpenlD to another server. You
can work with link tags in the similar way as meta tags by using yii\web
\View: :registerLinkTag(). For example, in a content view, you can re-
gister a link tag like follows,

$this->registerLinkTag([
'title' => 'Live News for Yii',
'rel' => 'alternate',
'type' => 'application/rss+xml',
'href' => 'https://www.yiiframework.com/rss.xml/',

D;
The code above will result in

<link title="Live News for Yii" rel="alternate" type="application/rss+xml"
href="https://www.yiiframework.com/rss.xml/">

Similar as registerMetaTag(), you can specify a key when calling registerLinkTag()
to avoid generating repeated link tags.

3.7.5 View Events

View components trigger several events during the view rendering process.
You may respond to these events to inject content into views or process the
rendering results before they are sent to end users.

e EVENT_BEFORE_RENDER: triggered at the beginning of rendering a file
in a controller. Handlers of this event may set yii\base\ViewEvent
::$isValid to be false to cancel the rendering process.

e EVENT_AFTER_RENDER: triggered after rendering a file by the call of
yii\base\View: :afterRender (). Handlers of this event may obtain
the rendering result through yii\base\ViewEvent: :$output and may
modify this property to change the rendering result.

3.7. VIEWS 103

e EVENT_BEGIN_PAGE: triggered by the call of yii\base\View: :beginPage ()
in layouts.
e EVENT_END_PAGE: triggered by the call of yii\base\View: :endPage()
in layouts.
e EVENT_BEGIN_BODY: triggered by the call of yii\web\View: :beginBody ()
in layouts.
e EVENT_END_BODY: triggered by the call of yii\web\View: :endBody ()
in layouts.
For example, the following code injects the current date at the end of the
page body:

\Yii::$app->view->on(View: : EVENT_END_BODY, function () {
echo date('Y-m-d');
b

3.7.6 Rendering Static Pages

Static pages refer to those Web pages whose main content are mostly static
without the need of accessing dynamic data pushed from controllers.

You can output static pages by putting their code in the view, and then
using the code like the following in a controller:
public function actionAbout ()
{

return $this->render('about');

}

If a Web site contains many static pages, it would be very tedious repeating
the similar code many times. To solve this problem, you may introduce a
standalone action called yii\web\ViewAction in a controller. For example,

namespace app\controllers;
use yii\web\Controller;

class SiteController extends Controller

{
public function actions()
{
return [
'page' => [
'class' => 'yiilweb\ViewAction',
1,
1;
}
}

Now if you create a view named about under the directory eapp/views/site/pages,
you will be able to display this view by the following URL:

104 CHAPTER 3. APPLICATION STRUCTURE

http://localhost/index.php?r=site},2Fpage&view=about

The GET parameter view tells yii\web\ViewAction which view is requested.
The action will then look for this view under the directory eapp/views/site/pages.
You may configure yii\web\ViewAction: :$viewPrefix to change the dir-
ectory for searching these views.

3.7.7 Best Practices

Views are responsible for presenting models in the format that end users
desire. In general, views

e should mainly contain presentational code, such as HTML, and simple
PHP code to traverse, format and render data.

e should not contain code that performs DB queries. Such code should
be done in models.

e should avoid direct access to request data, such as $_GeT, $_p0ST. This
belongs to controllers. If request data is needed, they should be pushed
into views by controllers.

e may read model properties, but should not modify them.

To make views more manageable, avoid creating views that are too complex
or contain too much redundant code. You may use the following techniques
to achieve this goal:

e use layouts to represent common presentational sections (e.g. page
header, footer).

e divide a complicated view into several smaller ones. The smaller views
can be rendered and assembled into a bigger one using the rendering
methods that we have described.

e create and use widgets as building blocks of views.

e create and use helper classes to transform and format data in views.

3.8 Modules

Modules are self-contained software units that consist of models, views, con-
trollers, and other supporting components. End users can access the con-
trollers of a module when it is installed in application. For these reasons,
modules are often viewed as mini-applications. Modules differ from applic-
ations in that modules cannot be deployed alone and must reside within
applications.

3.8.1 Creating Modules

A module is organized as a directory which is called the base path of the
module. Within the directory, there are sub-directories, such as controllers,
models, views, which hold controllers, models, views, and other code, just like
in an application. The following example shows the content within a module:

3.8. MODULES 105

forum/

Module.php the module class file

controllers/ containing controller class files
DefaultController.php the default controller class file

models/ containing model class files

views/ containing controller view and layout files
layouts/ containing layout view files
default/ containing view files for DefaultController

index.php the index view file

Module Classes

Each module should have a unique module class which extends from yii
\base\Module. The class should be located directly under the module’s base
path and should be autoloadable. When a module is being accessed, a single
instance of the corresponding module class will be created. Like application
instances, module instances are used to share data and components for code
within modules.

The following is an example how a module class may look like:

namespace app\modules\forum;

class Module extends \yiil\base\Module

{
public function init()
{
parent::init();
$this->params['foo'] = 'bar';
// ... other initialization code ...
}
}

If the init () method contains a lot of code initializing the module’s proper-
ties, you may also save them in terms of a configuration and load it with the
following code in init():

public function init()

{
parent::init();
// initialize the module with the configuration loaded from config.php
\Yii::configure($this, require __DIR__ . '/config.php');

}

where the configuration file config.php may contain the following content,
similar to that in an application configuration.

<7php
return [
'components' => [
// list of component configurations

106 CHAPTER 3. APPLICATION STRUCTURE

1,
'params' => [
// list of parameters
1,
1;

Controllers in Modules

When creating controllers in a module, a convention is to put the controller
classes under the controllers sub-namespace of the namespace of the mod-
ule class. This also means the controller class files should be put in the
controllers directory within the module’s base path. For example, to cre-
ate a post controller in the forum module shown in the last subsection, you
should declare the controller class like the following:

namespace app\modules\forum\controllers;
use yii\web\Controller;

class PostController extends Controller
{

// ...
}

You may customize the namespace of controller classes by configuring the
yii\base\Module: :$controllerNamespace property. In case some of the
controllers are outside of this namespace, you may make them accessible
by configuring the yii\base\Module: :$controllerMap property, similar to
what you do in an application.

Views in Modules

Views in a module should be put in the views directory within the module’s
base path. For views rendered by a controller in the module, they should
be put under the directory views/ControllerID, where ControllerID refers to
the controller ID. For example, if the controller class is PostController, the
directory would be views/post within the module’s base path.

A module can specify a layout that is applied to the views rendered by the
module’s controllers. The layout should be put in the views/layouts directory
by default, and you should configure the yii\base\Module: : $layout prop-
erty to point to the layout name. If you do not configure the 1ayout property,
the application’s layout will be used instead.

Console commands in Modules

Your module may also declare commands, that will be available through the
Console mode.

3.8. MODULES 107

In order for the command line utility to see your commands, you will
need to change the yii\base\Module::$controllerNamespace property,
when Yii is executed in the console mode, and point it to your commands
namespace.

One way to achieve that is to test the instance type of the Yii application
in the module’s init() method:

public function init()

{
parent::init();
if (Yii::$app instanceof \yiilconsole\Application) {
$this->controllerNamespace = 'app\modules\forum\commands';
}
}

Your commands will then be available from the command line using the
following route:

yii <module_id>/<command>/<sub_command>

3.8.2 Using Modules

To use a module in an application, simply configure the application by listing
the module in the modules property of the application. The following code
in the application configuration uses the forum module:

[
'modules' => [
'forum' => [
'class' => 'app\modules\forum\Module',
// ... other configurations for the module ...
1,
1,

Info: To connect console commands of your module, you also
need to include it in the console application configuration

The modules property takes an array of module configurations. Each array
key represents a module ID which uniquely identifies the module among all
modules in the application, and the corresponding array value is a configur-
ation for creating the module.

Routes

Like accessing controllers in an application, routes are used to address con-
trollers in a module. A route for a controller within a module must begin with
the module ID followed by the controller ID and action ID. For example, if an

108 CHAPTER 3. APPLICATION STRUCTURE

application uses a module named forum, then the route forum/post/index would
represent the index action of the post controller in the module. If the route
only contains the module ID, then the yii\base\Module: :$defaultRoute
property, which defaults to default, will determine which controller/action
should be used. This means a route forum would represent the default con-
troller in the forum module.

The URL manager rules for the modules should be added before yii
\web\UrlManager: :parseRequest () is fired. That means doing it in mod-
ule’s init() won’t work because module will be initialized when routes were
already processed. Thus, the rules should be added at bootstrap stage.
It is a also a good practice to wrap module’s URL rules with yii\web
\GroupUrlRule.

In case a module is used to version API, its URL rules should be added
directly in urlManager section of the application config.

Accessing Modules

Within a module, you may often need to get the instance of the module
class so that you can access the module ID, module parameters, module
components, etc. You can do so by using the following statement:

$module = MyModuleClass::getInstance();

where MyModuleClass refers to the name of the module class that you are
interested in. The getInstance() method will return the currently requested
instance of the module class. If the module is not requested, the method will
return null. Note that you do not want to manually create a new instance
of the module class because it will be different from the one created by Yii
in response to a request.

Info: When developing a module, you should not assume the
module will use a fixed ID. This is because a module can be
associated with an arbitrary ID when used in an application or
within another module. In order to get the module ID, you should
use the above approach to get the module instance first, and then
get the ID via $module->id.

You may also access the instance of a module using the following approaches:

// get the child module whose ID is "forum"
$module = \Yii::$app->getModule('forum');

// get the module to which the currently requested controller belongs
$module = \Yii::$app->controller->module;

3.8. MODULES 109

The first approach is only useful when you know the module ID, while the
second approach is best used when you know about the controllers being
requested.

Once you have the module instance, you can access parameters and com-
ponents registered with the module. For example,

$maxPostCount = $module->params['maxPostCount'];

Bootstrapping Modules

Some modules may need to be run for every request. The yii\debug\Module
module is such an example. To do so, list the IDs of such modules in the
bootstrap property of the application.

For example, the following application configuration makes sure the debug
module is always loaded:

[
'bootstrap' => [
'debug’',
])

'modules' => [

'debug' => 'yii\debug\Module',
]J

3.8.3 Nested Modules

Modules can be nested in unlimited levels. That is, a module can contain
another module which can contain yet another module. We call the former
parent module while the latter child module. Child modules must be declared
in the modules property of their parent modules. For example,

namespace app\modules\forum;

class Module extends \yii\base\Module

{
public function init()
{
parent::init();
$this->modules = [
'admin' => [
// you should consider using a shorter namespace here!
'class' => 'app\modules\forum\modules\admin\Module',
1,
1;
}

110 CHAPTER 3. APPLICATION STRUCTURE

For a controller within a nested module, its route should include the IDs of
all its ancestor modules. For example, the route forum/admin/dashboard/index
represents the index action of the dashboard controller in the admin module
which is a child module of the forum module.

Info: The getModule() method only returns the child module
directly belonging to its parent. The yii\base\Application::
$1oadedModules property keeps a list of loaded modules, includ-
ing both direct children and nested ones, indexed by their class
names.

3.8.4 Accessing components from within modules

Since version 2.0.13 modules support tree traversal. This allows module de-
velopers to reference (application) components via the service locator that
is their module. This means that it is preferable to use $module->get('db')
over Yii::$app->get('db'). The user of a module is able to specify a spe-
cific component to be used for the module in case a different component
(configuration) is required.

For example consider partial this application configuration:

'components' => [
'db' => [
'tablePrefix' => 'main_',
'class' => Connection::class,
'enableQueryCache' => false
1,
1,
'modules' => [
'mymodule’ => [
'components' => [
'db' => [
'tablePrefix' => 'module_',
'class' => Connection::class

The application database tables will be prefixed with main_, while all module
tables will be prefixed with module_. Note that configuration above is not
merged; the modules’ component for example will have the query cache
enabled since that is the default value.

3.8.5 Best Practices

Modules are best used in large applications whose features can be divided
into several groups, each consisting of a set of closely related features. Each

3.9. FILTERS 111

such feature group can be developed as a module which is developed and
maintained by a specific developer or team.

Modules are also a good way of reusing code at the feature group level.
Some commonly used features, such as user management, comment manage-
ment, can all be developed in terms of modules so that they can be reused
easily in future projects.

3.9 Filters

Filters are objects that run before and/or after controller actions. For ex-
ample, an access control filter may run before actions to ensure that they are
allowed to be accessed by particular end users; a content compression filter
may run after actions to compress the response content before sending them
out to end users.

A filter may consist of a pre-filter (filtering logic applied before actions)
and/or a post-filter (logic applied after actions).

3.9.1 Using Filters

Filters are essentially a special kind of behaviors. Therefore, using filters is
the same as using behaviors. You can declare filters in a controller class by
overriding its behaviors() method like the following:

public function behaviors()

{
return [
[
'class' => 'yii\filters\HttpCache',
'only' => ['index', 'view'],
'lastModified' => function ($action, $params) {
$q = new \yii\db\QueryQ;
return $q->from('user')->max('updated_at');
1,
1,
1;
}

By default, filters declared in a controller class will be applied to all actions
in that controller. You can, however, explicitly specify which actions the
filter should be applied to by configuring the only property. In the above
example, the HttpCache filter only applies to the index and view actions. You
can also configure the except property to prevent some actions from being
filtered.

Besides controllers, you can also declare filters in a module or application.
When you do so, the filters will be applied to all controller actions belonging
to that module or application, unless you configure the filters’ only and
except properties like described above.

112 CHAPTER 3. APPLICATION STRUCTURE

Note: When declaring filters in modules or applications, you
should use routes instead of action IDs in the only and except
properties. This is because action IDs alone cannot fully specify
actions within the scope of a module or application.

When multiple filters are configured for a single action, they are applied
according to the rules described below:
e Pre-filtering
— Apply filters declared in the application in the order they are
listed in behaviors().
— Apply filters declared in the module in the order they are listed
in behaviors().
— Apply filters declared in the controller in the order they are listed
in behaviors().
— If any of the filters cancel the action execution, the filters (both
pre-filters and post-filters) after it will not be applied.
e Running the action if it passes the pre-filtering.
e Post-filtering
— Apply filters declared in the controller in the reverse order they
are listed in behaviors().
— Apply filters declared in the module in the reverse order they are
listed in behaviors().
— Apply filters declared in the application in the reverse order they
are listed in behaviors().

3.9.2 Creating Filters

To create a new action filter, extend from yii\base\ActionFilter and over-
ride the beforeAction() and/or afterAction() methods. The former will
be executed before an action runs while the latter after an action runs. The
return value of beforeAction() determines whether an action should be
executed or not. If it is false, the filters after this one will be skipped and
the action will not be executed.

The following example shows a filter that logs the action execution time:

namespace app\components;

use Yii;
use yii\base\ActionFilter;

class ActionTimeFilter extends ActionFilter

{

private $_startTime;

public function beforeAction($action)
{

$this->_startTime = microtime(true);

3.9. FILTERS 113

return parent::beforeAction($action);

}

public function afterAction($action, $result)

{
$time = microtime(true) - $this->_startTime;
Yii::debug("Action '{$action->uniqueId}' spent $time second.");
return parent::afterAction($action, $result);

}

3.9.3 Core Filters

Yii provides a set of commonly used filters, found primarily under the yii\filters
namespace. In the following, we will briefly introduce these filters.

AccessControl

AccessControl provides simple access control based on a set of rules. In
particular, before an action is executed, AccessControl will examine the listed
rules and find the first one that matches the current context variables (such
as user IP address, user login status, etc.) The matching rule will dictate
whether to allow or deny the execution of the requested action. If no rule
matches, the access will be denied.

The following example shows how to allow authenticated users to access
the create and update actions while denying all other users from accessing
these two actions.

use yii\filters\AccessControl;

public function behaviors()

{
return [
'access' => [
'class' => AccessControl::class,
'only' => ['create', 'update'],
'rules' => [
// allow authenticated users
[
'allow' => true,
'roles' => ['@'],
1,
// everything else is denied by default
1,
1,
1
}

For more details about access control in general, please refer to the Author-
ization section.

114 CHAPTER 3. APPLICATION STRUCTURE

Authentication Method Filters

Authentication method filters are used to authenticate a user using various
methods, such as HTTP Basic Auth!'”, OAuth 2'®. These filter classes are
all under the yii\filters\auth namespace.

The following example shows how you can use yii\filters\auth\HttpBasicAuth
to authenticate a user using an access token based on HTTP Basic Auth
method. Note that in order for this to work, your user identity class
must implement the findIdentityByAccessToken() method.

use yii\filters\auth\HttpBasicAuth;

public function behaviors()
{

return [
'basicAuth' => [
'class' => HttpBasicAuth::class,
1,
1;

Authentication method filters are commonly used in implementing RESTful
APIs. For more details, please refer to the RESTful Authentication section.

ContentNegotiator

ContentNegotiator supports response format negotiation and application
language negotiation. It will try to determine the response format and/or
language by examining GET parameters and Accept HTTP header.

In the following example, ContentNegotiator is configured to support
JSON and XML response formats, and English (United States) and German
languages.

use yii\filters\ContentNegotiator;
use yii\web\Response;

public function behaviors()
{
return [
[
'class' => ContentNegotiator::class,
'formats' => [
'application/json' => Response::FORMAT_JSON,
'application/xml' => Response::FORMAT_XML,
1,
'languages' => [
'en-US',

"https://en.wikipedia.org/wiki/Basic_access_authentication
Bhttps://oauth.net/2/

https://en.wikipedia.org/wiki/Basic_access_authentication
https://oauth.net/2/

3.9. FILTERS 115

'de',

Response formats and languages often need to be determined much earlier
during the application lifecycle. For this reason, ContentNegotiator is de-
signed in a way such that it can also be used as a bootstrapping component
besides being used as a filter. For example, you may configure it in the
application configuration like the following:

use yiil\filters\ContentNegotiator;
use yii\web\Response;

[
'bootstrap' => [
[
'class' => ContentNegotiator::class,
'formats' => [
'application/json' => Response::FORMAT_JSON,
'application/xml' => Response::FORMAT_XML,
1,
'languages' => [
'en-US',
'de',
1,
1,
1,
1;
Info: In case the preferred content type and language cannot be
determined from a request, the first format and language listed
in formats and languages will be used.
HttpCache

HttpCache implements client-side caching by utilizing the Last-Modified and
Etag HTTP headers. For example,

use yii\filters\HttpCache;

public function behaviors()
{
return [
[
'class' => HttpCache::class,
'only' => ['index'],
'lastModified' => function ($action, $params) {
$q = new \yii\db\Query();
return $q->from('user')->max('updated_at');

116 CHAPTER 3. APPLICATION STRUCTURE

Please refer to the HT'TP Caching section for more details about using Ht-
tpCache.

PageCache

PageCache implements server-side caching of whole pages. In the following
example, PageCache is applied to the index action to cache the whole page for
maximum 60 seconds or until the count of entries in the post table changes. It
also stores different versions of the page depending on the chosen application
language.

use yii\filters\PageCache;
use yii\caching\DbDependency;

public function behaviors()

{
return [
'pageCache’' => [
'class' => PageCache::class,
'only' => ['index'],
'duration' => 60,
'dependency' => [
'class' => DbDependency::class,
'sql' => 'SELECT COUNT(*) FROM post',
1,
'variations' => [
\Yii::$app->language,
]
1,
1;
X

Please refer to the Page Caching section for more details about using PageCache.

RateLimiter

RateLimiter implements a rate limiting algorithm based on the leaky bucket
algorithm!®. It is primarily used in implementing RESTful APIs. Please
refer to the Rate Limiting section for details about using this filter.

VerbFilter

VerbFilter checks if the HT'TP request methods are allowed by the requested
actions. If not allowed, it will throw an HTTP 405 exception. In the following

Yhttps://en.wikipedia.org/wiki/Leaky_bucket

https://en.wikipedia.org/wiki/Leaky_bucket

3.9. FILTERS 117

example, VerbFilter is declared to specify a typical set of allowed request
methods for CRUD actions.

use yii\filters\VerbFilter;

public function behaviors()

{
return [
'verbs' => [
'class' => VerbFilter::class,
'actions' => [
'index' => ['get'],
'view' => ['get'],
'create' => ['get', 'post'],
'update' => ['get', 'put', 'post'],
'delete' => ['post', 'delete'l],
1,
1,
1;
}
Cors

Cross-origin resource sharing CORS?’ is a mechanism that allows many re-
sources (e.g. fonts, JavaScript, etc.) on a Web page to be requested from
another domain outside the domain the resource originated from. In particu-
lar, JavaScript’s AJAX calls can use the XMLHttpRequest mechanism. Such
“cross-domain” requests would otherwise be forbidden by Web browsers, per
the same origin security policy. CORS defines a way in which the browser
and the server can interact to determine whether or not to allow the cross-
origin request.

The Cors filter should be defined before Authentication / Authoriza-
tion filters to make sure the CORS headers will always be sent.

use yii\filters\Cors;
use yii\helpers\ArrayHelper;

public function behaviors()

{
return ArrayHelper: :merge([
[
'class' => Cors::class,
1,
], parent::behaviors());
}

Also check the section on REST Controllers if you want to add the CORS
filter to an yii\rest\ActiveController class in your APL.
The Cors filtering could be tuned using the $cors property.

Onttps://developer.mozilla.org/en-US/docs/HTTP/Access_control_CORS

https://developer.mozilla.org/en-US/docs/HTTP/Access_control_CORS

118 CHAPTER 3. APPLICATION STRUCTURE

e cors['Origin']: array used to define allowed origins. Can be ['*']
(everyormﬂ Or ['http://www.myserver.net', 'http://www.myotherserver.com'].
Default to ['*'1.

® cors['Access-Control-Request-Method']: array of allowed verbs like ['GET",
'OPTIONS', 'HEAD']. Default to ['GET', 'POST', 'PUT', 'PATCH', 'DELETE',
'"HEAD', 'OPTIONS'].

® cors['Access-Control-Request-Headers']: array of allowed headers. Can
be ['x'] all headers or specific ones ['X-Request-With']. Default to
['*'].

® cors['Access-Control-Allow-Credentials']: define if current request can
be made using credentials. Can be true, false or null (not set). Default
to null.

® cors['Access-Control-Max-Age']: define lifetime of pre-flight request. De-
fault to 86400.

For example, allowing CORS for origin : http://www.myserver.net with method
GET, HEAD and OPTIONS :

use yii\filters\Cors;
use yii\helpers\ArrayHelper;

public function behaviors()

{
return ArrayHelper: :merge ([
[
'class' => Cors::class,
'cors' => [
'Origin' => ['http://www.myserver.net'],
"Access-Control-Request-Method' => ['GET', 'HEAD',
'OPTIONS'],
1,
1,
], parent::behaviors());
}

You may tune the CORS headers by overriding default parameters on a per
action basis. For exaxn;ﬂe addjng the Access-Control-Allow-Credentials for
the login action could be done like this :

use yii\filters\Cors;
use yii\helpers\ArrayHelper;

public function behaviors()
{
return ArrayHelper: :merge ([
[
'class' => Cors::class,
'cors' => [
'Origin' => ['http://www.myserver.net'],
"Access-Control-Request-Method' => ['GET', 'HEAD',
'OPTIONS'],

3.10. WIDGETS 119

1,
'actions' => [
'login' => [
'Access-Control-Allow-Credentials' => true,
1
]

]’

], parent::behaviors());

3.10 Widgets

Widgets are reusable building blocks used in views to create complex and
configurable user interface elements in an object-oriented fashion. For ex-
ample, a date picker widget may generate a fancy date picker that allows
users to pick a date as their input. All you need to do is just to insert the
code in a view like the following:

<7php

use yii\jui\DatePicker;

2>

<?= DatePicker::widget(['name' => 'date']) 2>

There are a good number of widgets bundled with Yii, such as active form,
menu, jQuery UI widgets?!, Twitter Bootstrap widgets?2. In the following, we
will introduce the basic knowledge about widgets. Please refer to the class
API documentation if you want to learn about the usage of a particular
widget.

3.10.1 Using Widgets

Widgets are primarily used in views. You can call the yii\base\Widget::
widget () method to use a widget in a view. The method takes a configura-
tion array for initializing the widget and returns the rendering result of the
widget. For example, the following code inserts a date picker widget which
is configured to use the Russian language and keep the input in the from_date
attribute of $model.

<7php

use yii\jui\DatePicker;

2>

<?= DatePicker: :widget ([
'model' => $model,
'attribute' => 'from_date',
'language' => 'ru',

https://www.yiiframework.com/extension/yiisoft/yii2- jui
nttps://www.yiiframework.com/extension/yiisoft/yii2-bootstrap

https://www.yiiframework.com/extension/yiisoft/yii2-jui
https://www.yiiframework.com/extension/yiisoft/yii2-bootstrap

120 CHAPTER 3. APPLICATION STRUCTURE

'dateFormat' => 'php:Y-m-d',
IDIS

Some widgets can take a block of content which should be enclosed between
the invocation of yii\base\Widget: :begin() and yii\base\Widget: :end().
For example, the following code uses the yii\widgets\ActiveForm widget
to generate a login form. The widget will generate the opening and clos-
ing <form> tags at the place where begin() and end() are called, respectively.
Anything in between will be rendered as is.

<7php

use yii\widgets\ActiveForm;
use yii\helpers\Html;

2>

<?php $form = ActiveForm::begin(['id' => 'login-form']); 2>
<?= $form->field($model, 'username') ?>
<?= $form->field($model, 'password')->passwordInput() 2>
<div class="form-group">
<?= Html::submitButton('Login') 2>
</div>
<?php ActiveForm::end(); ?>
Note that unlike yii\base\Widget: :widget () which returns the rendering

result of a widget, the method yii\base\Widget: :begin() returns an in-
stance of the widget which you can use to build the widget content.

Note: Some widgets will use output buffering®® to adjust the
enclosed content when yii\base\Widget::end() is called. For
this reason calling yii\base\Widget::begin() and yii\base
\Widget::end() is expected to happen in the same view file.
Not following this rule may result in unexpected output.

Configuring global defaults

Global defaults for a widget type could be configured via DI container:

\Yii::$container->set('yii\widgets\LinkPager', ['maxButtonCount' => 5]);

See “Practical Usage” section in Dependency Injection Container guide for
details.

Zhttps://www.php.net/manual/en/book.outcontrol.php

https://www.php.net/manual/en/book.outcontrol.php

3.10. WIDGETS 121

3.10.2 Creating Widgets

Widget can be created in either of two different ways depending on the
requirement.

1: Utilizing method

To create a widget, extend from yii\base\Widget and override the yii\base
\Widget::init() and/or yii\base\Widget: :run() methods. Usually, the
init () method should contain the code that initializes the widget properties,
while the run() method should contain the code that generates the render-
ing result of the widget. The rendering result may be directly “echoed” or
returned as a string by run().

In the following example, HelloWwidget HTML-encodes and displays the
content assigned to its message property. If the property is not set, it will
display “Hello World” by default.

namespace app\components;

use yii\base\Widget;
use yii\helpers\Html;

class HelloWidget extends Widget

{
public $message;
public function init()
{
parent::init();
if ($this->message === null) {
$this->message = 'Hello World';
}
}
public function run()
{
return Html::encode($this->message);
}
}

To use this widget, simply insert the following code in a view:

<7php

use app\components\HelloWidget;

2>

<?= HelloWidget::widget(['message' => 'Good morning']l) ?>

Sometimes, a widget may need to render a big chunk of content. While you
can embed the content within the run() method, a better approach is to put
it in a view and call yii\base\Widget: :render () to render it. For example,

122 CHAPTER 3. APPLICATION STRUCTURE

public function run()

{
return $this->render('hello');

}

2: Utilizing and methods

This is similar to above one with minor difference. Below is a variant of
HelloWidget which takes the content enclosed within the begin() and end()
calls, HTML-encodes it and then displays it.

namespace app\components;

use yii\base\Widget;
use yii\helpers\Html;

class HelloWidget extends Widget

{
public function init()
{
parent::init();
ob_start();
}
public function run()
{
$content = ob_get_clean();
return Html::encode($content);
}
}

As you can see, PHP’s output buffer is started in init() so that any output
between the calls of init) and run() can be captured, processed and returned
n run().

Info: When you call yii\base\Widget: :begin(), a new in-
stance of the widget will be created and the init () method will
be called at the end of the widget constructor. When you call
yii\base\Widget: :end(), the run() method will be called whose
return result will be echoed by end().

The following code shows how to use this new variant of HelloWidget:

<7php

use app\components\HelloWidget;
2>

<?php HelloWidget::begin(); 2>

sample content that may contain one or more HTML
<pre>tags</pre>

3.11. ASSETS 123

If this content grows too big, use sub views
For e.g.

<?php echo $this->render('viewfile'); // Note: here render() method is
of class \yii\base\View as this part of code is within view file and not in
Widget class file 2>

<7php HelloWidget::end(); 2>

By default, views for a widget should be stored in files in the widgetPath/views

directory, where WidgetPath stands for the directory containing the widget

class file. Therefore, the above example will render the view file @app/components/views/hello.php,
assuming the widget class is located under @app/components. You may override

the yii\base\Widget: :getViewPath() method to customize the directory

containing the widget view files.

3.10.3 Best Practices

Widgets are an object-oriented way of reusing view code.

When creating widgets, you should still follow the MVC pattern. In
general, you should keep logic in widget classes and keep presentation in
views.

Widgets should be designed to be self-contained. That is, when using a
widget, you should be able to just drop it in a view without doing anything
else. This could be tricky if a widget requires external resources, such as
CSS, JavaScript, images, etc. Fortunately, Yii provides the support for asset
bundles, which can be utilized to solve the problem.

When a widget contains view code only, it is very similar to a view. In
fact, in this case, their only difference is that a widget is a redistributable
class, while a view is just a plain PHP script that you would prefer to keep
within your application.

3.11 Assets

An asset in Yii is a file that may be referenced in a Web page. It can be a
CSS file, a JavaScript file, an image or video file, etc. Assets are located in
Web-accessible directories and are directly served by Web servers.

It is often preferable to manage assets programmatically. For example,
when you use the yii\jui\DatePicker widget in a page, it will automat-
ically include the required CSS and JavaScript files, instead of asking you
to manually find these files and include them. And when you upgrade the
widget to a new version, it will automatically use the new version of the
asset files. In this tutorial, we will describe the powerful asset management
capability provided in Yii.

124 CHAPTER 3. APPLICATION STRUCTURE

3.11.1 Asset Bundles

Yii manages assets in the unit of asset bundle. An asset bundle is simply a
collection of assets located in a directory. When you register an asset bundle
in a view, it will include the CSS and JavaScript files in the bundle in the
rendered Web page.

3.11.2 Defining Asset Bundles

Asset bundles are specified as PHP classes extending from yii\web\AssetBundle.
The name of a bundle is simply its corresponding fully qualified PHP class
name (without the leading backslash). An asset bundle class should be
autoloadable. It usually specifies where the assets are located, what CSS
and JavaScript files the bundle contains, and how the bundle depends on
other bundles.

The following code defines the main asset bundle used by the basic project
template:

<7php
namespace app\assets;
use yii\web\AssetBundle;

class AppAsset extends AssetBundle
{
public $basePath = 'Gwebroot';
public $baseUrl = 'Qweb';
public $css = [
'css/site.css',
['css/print.css', 'media' => 'print'],
1;
public $js = [
1;
public $depends = [
'yii\web\YiiAsset',
'yii\bootstrap\BootstrapAsset',
1;

The above AppAsset class specifies that the asset files are located under the
@webroot directory which corresponds to the URL eweb; the bundle contains a
single CSS file css/site.css and no JavaScript file; the bundle depends on two
other bundles: yii\web\YiiAsset and yii\bootstrap\BootstrapAsset.
More detailed explanation about the properties of yii\web\AssetBundle
can be found in the following:
e sourcePath: specifies the root directory that contains the asset files
in this bundle. This property should be set if the root directory is not

3.11. ASSETS 125

Web accessible. Otherwise, you should set the basePath property and
baseUrl, instead. Path aliases can be used here.

e basePath: specifies a Web-accessible directory that contains the asset
files in this bundle. When you specify the sourcePath property, the
asset manager will publish the assets in this bundle to a Web-accessible
directory and overwrite this property accordingly. You should set this
property if your asset files are already in a Web-accessible directory
and do not need asset publishing. Path aliases can be used here.

e baseUrl: specifies the URL corresponding to the directory basePath.
Like basePath, if you specify the sourcePath property, the asset man-
ager will publish the assets and overwrite this property accordingly.
Path aliases can be used here.

e css: an array listing the CSS files contained in this bundle. Note that
only forward slash “/” should be used as directory separators. Each
file can be specified on its own as a string or in an array together with
attribute tags and their values.

e js: an array listing the JavaScript files contained in this bundle. The
format of this array is the same as that of css. Each JavaScript file
can be specified in one of the following two formats:

— arelative path representing a local JavaScript file (e.g. js/main.js).
The actual path of the file can be determined by prepending yii
\web\AssetManager: : $basePath to the relative path, and the ac-
tual URL of the file can be determined by prepending yii\web
\AssetManager: : $baseUrl to the relative path.

— an absolute URL representing an external JavaScript file. For ex-
ample, https://ajax.googleapis.com/ajax/libs/jquery/2.1.1/jquery.min. js
or //ajax.googleapis.com/ajax/libs/jquery/2.1.1/jquery.min. js.

e depends: an array listing the names of the asset bundles that this
bundle depends on (to be explained shortly).

e jsOptions: specifies the options that will be passed to the yii\web
\View: :registerJsFile() method when it is called to register every
JavaScript file in this bundle.

e cssOptions: specifies the options that will be passed to the yii\web
\View: :registerCssFile() method when it is called to register every
CSS file in this bundle.

e publishOptions: specifies the options that will be passed to the yii
\web\AssetManager: :publish() method when it is called to publish
source asset files to a Web directory. This is only used if you specify
the sourcePath property.

Asset Locations

Assets, based on their location, can be classified as:
e source assets: the asset files are located together with PHP source code

126 CHAPTER 3. APPLICATION STRUCTURE

which cannot be directly accessed via Web. In order to use source assets
in a page, they should be copied to a Web directory and turned into
the so-called published assets. This process is called asset publishing
which will be described in detail shortly.
e published assets: the asset files are located in a Web directory and can
thus be directly accessed via Web.
e external assets: the asset files are located on a Web server that is
different from the one hosting your Web application.
When defining an asset bundle class, if you specify the sourcePath property,
it means any assets listed using relative paths will be considered as source
assets. If you do not specify this property, it means those assets are published
assets (you should therefore specify basePath and baseUrl to let Yii know
where they are located).
It is recommended that you place assets belonging to an application in
a Web directory to avoid the unnecessary asset publishing process. This is
why AppAsset in the prior example specifies basePath instead of sourcePath.
For extensions, because their assets are located together with their source
code in directories that are not Web accessible, you have to specify the
sourcePath property when defining asset bundle classes for them.

Note: Do not use @webroot/assets as the source path. This
directory is used by default by the asset manager to save the
asset files published from their source location. Any content in
this directory is considered temporarily and may be subject to
removal.

Asset Dependencies

When you include multiple CSS or JavaScript files in a Web page, they have
to follow a certain order to avoid overriding issues. For example, if you are
using a jQuery UI widget in a Web page, you have to make sure the jQuery
JavaScript file is included before the jQuery UI JavaScript file. We call such
ordering the dependencies among assets.

Asset dependencies are mainly specified through the yii\web\AssetBundle
: : $depends property. In the AppAsset example, the asset bundle depends on
two other asset bundles: yii\web\YiiAsset and yii\bootstrap\BootstrapAsset,
which means the CSS and JavaScript files in AppAsset will be included after
those files in the two dependent bundles.

Asset dependencies are transitive. This means if bundle A depends on B
which depends on C, A will depend on C, too.

Asset Options

You can specify the cssOptions and jsOptions properties to customize the
way that CSS and JavaScript files are included in a page. The values of

3.11. ASSETS 127

these properties will be passed to the yii\web\View: :registerCssFile()
and yii\web\View::registerJsFile() methods, respectively, when they
are called by the view to include CSS and JavaScript files.

Note: The options you set in a bundle class apply to every
CSS/JavaScript file in the bundle. If you want to use different
options for different files, you should use the format mentioned
above or create separate asset bundles, and use one set of options
in each bundle.

For example, to conditionally include a CSS file for browsers that are IE9 or
below, you can use the following option:

public $cssOptions = ['condition' => 'lte IE9'];

This will cause a CSS file in the bundle to be included using the following
HTML tags:

<!--[if lte IE9]>
<link rel="stylesheet" href="path/to/foo.css">
<![endif]-->

To wrap the generated CSS link tags within <noscript>, you can configure
cssOptions as follows,

public $cssOptions = ['noscript' => truel;

To include a JavaScript file in the head section of a page (by default, JavaS-
cript files are included at the end of the body section), use the following
option:

public $jsOptions = ['position' => \yii\web\View::POS_HEAD];

By default, when an asset bundle is being published, all contents in the dir-
ectory specified by yii\web\AssetBundle: :$sourcePath will be published.
You can customize this behavior by configuring the publishOptions prop-
erty. For example, to publish only one or a few subdirectories of yii\web
\AssetBundle: : $sourcePath, you can do the following in the asset bundle
class:

<7php
namespace app\assets;

use yii\web\AssetBundle;
class FontAwesomeAsset extends AssetBundle

{

public $sourcePath = 'Gbower/font-awesome';

128 CHAPTER 3. APPLICATION STRUCTURE

public $css = [
'css/font-awesome.min.css',
1;
public $publishOptions = [
'only' => [
'fonts/*',
'css/*',

1;

The above example defines an asset bundle for the “fontawesome” package??.
By specifying the only publishing option, only the fonts and css subdirect-
ories will be published.

Bower and NPM Assets installation

Most JavaScript/CSS packages are managed by Bower?> and/or NPM?
package managers. In PHP world we have Composer, that manages PHP
dependencies, but it is possible to load both Bower and NPM packages using
composer. json just as PHP packages.

To achieve this, we should configure our composer a bit. There are two
options to do that:

Using asset-packagist repository This way will satisfy requirements of
the majority of projects, that need NPM or Bower packages.

Note: Since 2.0.13 both Basic and Advanced application tem-
plates are pre-configured to use asset-packagist by default, so you
can skip this section.

In the composer.json of your project, add the following lines:

"repositories"B [
{
"type": "composer",
"url": "https://asset-packagist.org"

Adjust enpm and e@bower aliases in you application configuration:

Znttps://fontawesome . com/
http://bower.io/
Znttps://www.npmjs.com/

https://fontawesome.com/
http://bower.io/
https://www.npmjs.com/

3.11. ASSETS 129

$config = [

'aliases' => [
'@bower' => '@vendor/bower-asset',
'@npm' => '@vendor/npm-asset',
] 3
1;

Visit asset-packagist.org?” to know, how it works.

Using fxp/composer-asset-plugin Compared to asset-packagist, composer-
asset-plugin does not require any changes to application config. Instead, it
requires global installation of a special Composer plugin by running the fol-
lowing command:

composer global require "fxp/composer-asset-plugin:~1.4.1"

This command installs composer asset plugin®® globally which allows man-
aging Bower and NPM package dependencies through Composer. After the
plugin installation, every single project on your computer will support Bower
and NPM packages through composer. json.

Add the following lines to composer. json of your project to adjust direct-
ories where the installed packages will be placed, if you want to publish them
using Yii:

"config"B {
"fxp-asset": {
"installer-paths": {
"npm-asset-library": "vendor/npm",
"bower-asset-library": "vendor/bower"

Note: fxp/composer-asset-plugin significantly slows down the composer
update command in comparison to asset-packagist.

After configuring Composer to support Bower and NPM:

1. Modify the composer.json file of your application or extension and list
the package in the require entry. You should use bower-asset/PackageName
(for Bower packages) or npm-asset/PackageName (for NPM packages) to
refer to the library.

2Thttps://asset-packagist.org
nttps://github. com/fxpio/composer-asset-plugin/

https://asset-packagist.org
https://github.com/fxpio/composer-asset-plugin/

130 CHAPTER 3. APPLICATION STRUCTURE

2. Run composer update

3. Create an asset bundle class and list the JavaScript/CSS files that you
plan to use in your application or extension. You should specify the
sourcePath property as @bower/PackageName OI @npm/PackageName. This
is because Composer will install the Bower or NPM package in the
directory corresponding to this alias.

Note: Some packages may put all their distributed files in a sub-
directory. If this is the case, you should specify the subdirectory
as the value of sourcePath. For example, yii\web\JqueryAsset
uses @bower/jquery/dist instead of @bower/jquery.

3.11.3 Using Asset Bundles

To use an asset bundle, register it with a view by calling the yii\web
\AssetBundle: :register () method. For example, in a view template you
can register an asset bundle like the following:

use app\assets\AppAsset;
AppAsset: :register($this); // $this represents the view object

Info: The yii\web\AssetBundle: :register () method returns
an asset bundle object containing the information about the pub-
lished assets, such as basePath or baseUrl.

If you are registering an asset bundle in other places, you should provide the
needed view object. For example, to register an asset bundle in a widget
class, you can get the view object by $this->view.

When an asset bundle is registered with a view, behind the scenes Yii will
register all its dependent asset bundles. And if an asset bundle is located in a
directory inaccessible through the Web, it will be published to a Web direct-
ory. Later, when the view renders a page, it will generate <1ink> and <script>
tags for the CSS and JavaScript files listed in the registered bundles. The
order of these tags is determined by the dependencies among the registered
bundles and the order of the assets listed in the yii\web\AssetBundle::
$css and yii\web\AssetBundle: :$js properties.

Dynamic Asset Bundles

Being a regular PHP class asset bundle can bear some extra logic related
to it and may adjust its internal parameters dynamically. For example:
you may use some sophisticated JavaScript library, which provides some
internationalization packed in separated source files: each per each supported
language. Thus you will need to add particular ‘.js’ file to your page in order
to make library translation work. This can be achieved overriding yii\web
\AssetBundle: :init () method:

3.11. ASSETS 131

namespace app\assets;

use yii\web\AssetBundle;
use Yii;

class SophisticatedAssetBundle extends AssetBundle

{
public $sourcePath = '/path/to/sophisticated/src';
public $js = [
'sophisticated.js' // file, which is always used
1;
public function init()
{
parent::init();
$this->js[] = 'i18n/' . Yii::$app->language . '.js'; // dynamic file
added
}
}

Particular asset bundle can also be adjusted via its instance returned by yii
\web\AssetBundle: :register(). For example:

use app\assets\SophisticatedAssetBundle;
use Yii;

$bundle = SophisticatedAssetBundle::register(Yii::$app->view);
$bundle->js[] = 'i18n/' . Yii::$app->language . '.js'; // dynamic file
added

Note: although dynamic adjustment of the asset bundles is sup-
ported, it is a bad practice, which may lead to unexpected side
effects, and should be avoided if possible.

Customizing Asset Bundles

Yii manages asset bundles through an application component named assetManager
which is implemented by yii\web\AssetManager. By configuring the yii
\web\AssetManager: : $bundles property, it is possible to customize the be-
havior of an asset bundle. For example, the default yii\web\JqueryAsset
asset bundle uses the jquery.js file from the installed jquery Bower package.

To improve the availability and performance, you may want to use a version
hosted by Google. This can be achieved by configuring assetManager in the
application configuration like the following:

return [
/7
'components' => [
'assetManager' => [
'bundles' => [
'yii\web\JqueryAsset' => [

132 CHAPTER 3. APPLICATION STRUCTURE

'sourcePath' => null, // do not publish the bundle
L ' _
jst => 1

'//ajax.googleapis.com/ajax/libs/jquery/2.1.1/jquery.min. js',

You can configure multiple asset bundles similarly through yii\web\AssetManager
: :$bundles. The array keys should be the class names (without the leading
backslash) of the asset bundles, and the array values should be the corres-
ponding configuration arrays.

Tip: You can conditionally choose which assets to use in an asset
bundle. The following example shows how to use jquery.js in the
development environment and jquery.min.js otherwise:

'yii\web\JqueryAsset' => [
'js' => [
YII_ENV_DEV 7 'jquery.js' : 'jquery.min.js'
]
1,

You can disable one or multiple asset bundles by associating false with the
names of the asset bundles that you want to disable. When you register
a disabled asset bundle with a view, none of its dependent bundles will be
registered, and the view also will not include any of the assets in the bundle
in the page it renders. For example, to disable yii\web\JqueryAsset, you
can use the following configuration:

return [
/7
'components' => [
'assetManager' => [
'bundles' => [
'yii\web\JqueryAsset' => false,

You can also disable all asset bundles by setting yii\web\AssetManager: :
$bundles as false.

Keep in mind that customization made via yii\web\AssetManager: :
$bundles is applied at the creation of the asset bundle, e.g. at object con-
structor stage. Thus any adjustments made to the bundle object after that

3.11. ASSETS 133

will override the mapping setup at yii\web\AssetManager: :$bundles level.

In particular: adjustments made inside yii\web\AssetBundle: :init () method

or over the registered bundle object will take precedence over AssetManager
configuration. Here are the examples, where mapping set via yii\web\AssetManager
: :$bundles makes no effect:

// Program source code:
namespace app\assets;

use yii\web\AssetBundle;
use Yii;

class LanguageAssetBundle extends AssetBundle

{
/7
public function init()
{
parent::init();
$this->baseUrl = '@web/i18n/' . Yii::$app->language; // can NOT be
handled by “AssetManager’!
}
}
/7

$bundle = \app\assets\LargeFileAssetBundle::register(Yii: :$app->view);
$bundle->baseUrl = YII_DEBUG ? '@web/large—files':
'@Queb/large-files/minified'; // can NOT be handled by “AssetManager’!

// Application config :

return [
/7.
'components' => [
'assetManager' => [
'bundles' => [
'app\assets\LanguageAssetBundle' => [
'baseUrl' => 'http://some.cdn.com/files/i18n/en' //
makes NO effect!
1,
'app\assets\LargeFileAssetBundle' => [
'baseUrl' => 'http://some.cdn.com/files/large-files' //
makes NO effect!

134 CHAPTER 3. APPLICATION STRUCTURE

Asset Mapping

Sometimes you may want to “fix” incorrect /incompatible asset file paths used
in multiple asset bundles. For example, bundle A uses jquery.min.js version
1.11.1, and bundle B uses jquery.js version 2.1.1. While you can fix the
problem by customizing each bundle, an easier way is to use the asset map
feature to map incorrect assets to the desired ones. To do so, configure the
yii\web\AssetManager: : $assetMap property like the following:

return [
/.
'components' => [
'assetManager' => [
'assetMap' => [

'jquery.js' =>
'//ajax.googleapis.com/ajax/libs/jquery/2.1.1/jquery.min. js',

The keys of assetMap are the asset names that you want to fix, and the
values are the desired asset paths. When you register an asset bundle with a
view, each relative asset file in its css and js arrays will be examined against
this map. If any of the keys are found to be the last part of an asset file
(which is prefixed with yii\web\AssetBundle: :$sourcePath if available),
the corresponding value will replace the asset and be registered with the view.
For example, the asset file my/path/to/jquery.js matches the key jquery.js.

Note: Only assets specified using relative paths are subject to
asset mapping. The target asset paths should be either absolute
URLs or paths relative to yii\web\AssetManager: : $basePath.

Asset Publishing

As aforementioned, if an asset bundle is located in a directory that is not
Web accessible, its assets will be copied to a Web directory when the bundle
is being registered with a view. This process is called asset publishing, and
is done automatically by the asset manager.

By default, assets are published to the directory ewebroot/assets which
corresponds to the URL eweb/assets. You may customize this location by
configuring the basePath and baseUrl properties.

Instead of publishing assets by file copying, you may consider using sym-
bolic links, if your OS and Web server allow. This feature can be enabled by
setting linkAssets to be true.

return [

/o

3.11. ASSETS 135

'components' => [
'assetManager' => [
'linkAssets' => true,
1,
1,
1;

With the above configuration, the asset manager will create a symbolic link
to the source path of an asset bundle when it is being published. This is
faster than file copying and can also ensure that the published assets are
always up-to-date.

Cache Busting

For Web application running in production mode, it is a common practice
to enable HTTP caching for assets and other static resources. A drawback
of this practice is that whenever you modify an asset and deploy it to pro-
duction, a user client may still use the old version due to the HT'TP caching.
To overcome this drawback, you may use the cache busting feature, which
was introduced in version 2.0.3, by configuring yii\web\AssetManager like
the following:

return [
/o
'components' => [
'assetManager' => [
'appendTimestamp' => true,
1,
1,
1;

By doing so, the URL of every published asset will be appended with its
last modification timestamp. For example, the URL to yii.js may look like
/assets/5515a87c/yii.js?v=1423448645", where the parameter v represents the
last modification timestamp of the yii.js file. Now if you modify an asset, its
URL will be changed, too, which causes the client to fetch the latest version
of the asset.

3.11.4 Commonly Used Asset Bundles

The core Yii code has defined many asset bundles. Among them, the follow-
ing bundles are commonly used and may be referenced in your application
or extension code.
e yii\web\YiiAsset: It mainly includes the yii.js file which implements
a mechanism of organizing JavaScript code in modules. It also provides
special support for data-method and data-confirm attributes and other
useful features. More information about yii.js can be found in the
Client Scripts Section.

136 CHAPTER 3. APPLICATION STRUCTURE

e yii\web\JqueryAsset: It includes the jquery.js file from the jQuery
Bower package.

e yii\bootstrap\BootstrapAsset: It includes the CSS file from the
Twitter Bootstrap framework.

e yii\bootstrap\BootstrapPluginAsset: It includes the JavaScript
file from the Twitter Bootstrap framework for supporting Bootstrap
JavaScript plugins.

e yii\jui\JuiAsset: It includes the CSS and JavaScript files from the
jQuery Ul library.

If your code depends on jQuery, jQuery UI or Bootstrap, you should use
these predefined asset bundles rather than creating your own versions. If the
default setting of these bundles do not satisfy your needs, you may customize
them as described in the Customizing Asset Bundle subsection.

3.11.5 Asset Conversion

Instead of directly writing CSS and/or JavaScript code, developers often
write them in some extended syntax and use special tools to convert it into
CSS/JavaScript. For example, for CSS code you may use LESS?? or SCSS?;
and for JavaScript you may use TypeScript3!.

You can list the asset files in extended syntax in the css and js properties
of an asset bundle. For example,

class AppAsset extends AssetBundle
{
public $basePath = 'Gwebroot';
public $baseUrl = 'Queb';
public $css = [
'css/site.less',
1;
public $js = [
'js/site.ts',
1;
public $depends = [
'yii\web\YiiAsset',
'yii\bootstrap\BootstrapAsset',
1;

When you register such an asset bundle with a view, the asset manager
will automatically run the pre-processor tools to convert assets in recognized
extended syntax into CSS/JavaScript. When the view finally renders a page,
it will include the CSS/JavaScript files in the page, instead of the original
assets in extended syntax.

nttp://lesscss.org/
30nttp://sass-lang.com/
3ttp: //www.typescriptlang.org/

http://lesscss.org/
http://sass-lang.com/
http://www.typescriptlang.org/

3.11. ASSETS 137

Yii uses the file name extensions to identify which extended syntax an
asset is in. By default it recognizes the following syntax and file name ex-
tensions:

o [JESSgQI.less

o SCSSiﬁ .scss

e Stylus®*: .sty1

o CoffeeScript®: .coffee

e TypeScript36: .ts
Yii relies on the installed pre-processor tools to convert assets. For example,
to use LESS37 you should install the lessc pre-processor command.

You can customize the pre-processor commands and the supported ex-
tended syntax by configuring yii\web\AssetManager: :$converter like the
following;:

return [
'components' => [
'assetManager' => [
'converter' => [
'class' => 'yiilweb\AssetConverter',
'commands' => [
'less' => ['css', 'lessc {from} {to} --no-color'l],
'ts' => ['js', 'tsc --out {to} {from}'],

In the above, we specify the supported extended syntax via the yii\web
\AssetConverter: : $commands property. The array keys are the file exten-
sion names (without leading dot), and the array values are the resulting asset
file extension names and the commands for performing the asset conversion.
The tokens {from} and {to} in the commands will be replaced with the source
asset file paths and the target asset file paths.

Info: There are other ways of working with assets in extended
syntax, besides the one described above. For example, you can
use build tools such as grunt®® to monitor and automatically
convert assets in extended syntax. In this case, you should list
the resulting CSS/JavaScript files in asset bundles rather than
the original files.

32https://lesscss.org/
33https://sass-lang.com/
3https://stylus-lang. com/
3https://coffeescript.org/
3https://www.typescriptlang.org/
3™https://lesscss.org/
38http://gruntjs.com/

https://lesscss.org/
https://sass-lang.com/
https://stylus-lang.com/
https://coffeescript.org/
https://www.typescriptlang.org/
https://lesscss.org/
http://gruntjs.com/

138 CHAPTER 3. APPLICATION STRUCTURE

3.11.6 Combining and Compressing Assets

A Web page can include many CSS and/or JavaScript files. To reduce the
number of HTTP requests and the overall download size of these files, a
common practice is to combine and compress multiple CSS/JavaScript files
into one or very few files, and then include these compressed files instead of
the original ones in the Web pages.

Info: Combining and compressing assets are usually needed
when an application is in production mode. In development
mode, using the original CSS/JavaScript files is often more con-
venient for debugging purposes.

In the following, we introduce an approach to combine and compress asset
files without the need to modify your existing application code.

1. Find all the asset bundles in your application that you plan to combine
and compress.

2. Divide these bundles into one or a few groups. Note that each bundle
can only belong to a single group.

3. Combine/compress the CSS files in each group into a single file. Do
this similarly for the JavaScript files.

4. Define a new asset bundle for each group:

e Set the css and js properties to be the combined CSS and JavaS-
cript files, respectively.

e Customize the asset bundles in each group by setting their css
and js properties to be empty, and setting their depends property
to be the new asset bundle created for the group.

Using this approach, when you register an asset bundle in a view, it causes
the automatic registration of the new asset bundle for the group that the
original bundle belongs to. And as a result, the combined /compressed asset
files are included in the page, instead of the original ones.

An Example

Let’s use an example to further explain the above approach.

Assume your application has two pages, X and Y. Page X uses asset
bundles A, B and C, while Page Y uses asset bundles B, C and D.

You have two ways to divide these asset bundles. One is to use a single
group to include all asset bundles, the other is to put A in Group X, D
in Group Y, and (B, C) in Group S. Which one is better? It depends.
The first way has the advantage that both pages share the same combined

3.11. ASSETS 139

CSS and JavaScript files, which makes HTTP caching more effective. On
the other hand, because the single group contains all bundles, the size of
the combined CSS and JavaScript files will be bigger and thus increase the
initial file transmission time. For simplicity in this example, we will use the
first way, i.e., use a single group to contain all bundles.

Info: Dividing asset bundles into groups is not trivial task. It
usually requires analysis about the real world traffic data of vari-
ous assets on different pages. At the beginning, you may start
with a single group for simplicity.

Use existing tools (e.g. Closure Compiler?®, YUI Compressor*’) to combine
and compress CSS and JavaScript files in all the bundles. Note that the files
should be combined in the order that satisfies the dependencies among the
bundles. For example, if Bundle A depends on B which depends on both C
and D, then you should list the asset files starting from C and D, followed
by B and finally A.

After combining and compressing, we get one CSS file and one JavaScript
file. Assume they are named as all-xyz.css and all-xyz.js, where xyz stands
for a timestamp or a hash that is used to make the file name unique to avoid
HTTP caching problems.

We are at the last step now. Configure the asset manager as follows in
the application configuration:

return [
'components' => [
'assetManager' => [
'bundles' => [
'all' => [
'class' => 'yii\web\AssetBundle',
'basePath' => 'Qwebroot/assets',
'baseUrl' => 'Quweb/assets',
'css' => ['all-xyz.css'],
'js' => ['all-xyz.js'],
1,
"A' => ['css' => [1, 'js' => []1, 'depends' => ['all'l],
'B'" => ['css' => [1, 'js' => [], 'depends' => ['all'l],
'C' => ['ess' => [], 'js' => [], 'depends' => ['all']],
'D' => ['css' => [1, 'js' => []1, 'depends' => ['all'l],

As explained in the Customizing Asset Bundles subsection, the above config-
uration changes the default behavior of each bundle. In particular, Bundle

3https://developers.google.com/closure/compiler/
“Onttps://github.com/yui/yuicompressor/

https://developers.google.com/closure/compiler/
https://github.com/yui/yuicompressor/

140 CHAPTER 3. APPLICATION STRUCTURE

A, B, C and D no longer have any asset files. They now all depend on
the a11 bundle which contains the combined all-xyz.css and all-xyz.js files.
Consequently, for Page X, instead of including the original source files from
Bundle A, B and C, only these two combined files will be included; the same
thing happens to Page Y.

There is one final trick to make the above approach work more smoothly.
Instead of directly modifying the application configuration file, you may put
the bundle customization array in a separate file and conditionally include
this file in the application configuration. For example,

return [
'components' => [
'assetManager' => [
'bundles' => require __DIR__ . '/' . (YII_ENV_PROD 7

'assets-prod.php' : 'assets-dev.php'),

]’
1;

That is, the asset bundle configuration array is saved in assets-prod.php for
production mode, and assets-dev.php for non-production mode.

Note: this asset combining mechanism is based on the ability
of yii\web\AssetManager: : $bundles to override the properties
of the registered asset bundles. However, as it already has been
said above, this ability does not cover asset bundle adjustments,
which are performed at yii\web\AssetBundle: :init () method
or after bundle is registered. You should avoid usage of such
dynamic bundles during the asset combining.

Using the Command

Yii provides a console command named asset to automate the approach that
we just described.

To use this command, you should first create a configuration file to
describe what asset bundles should be combined and how they should be
grouped. You can use the asset/template sub-command to generate a tem-
plate first and then modify it to fit for your needs.

yii asset/template assets.php

The command generates a file named assets.php in the current directory.
The content of this file looks like the following:

<7php
VA L]

* Configuration file for the "yit asset” console command.

3.11. ASSETS 141

* Note that in the console environment, some path aliases like 'Quwebroot'
and '@web' may not exist.
* Please define these missing path aliases.
*/
return [
// Addjust command/callback for JavaScript files compressing:
'jsCompressor' => 'java -jar compiler.jar --js {from} --js_output_file
{to}',
// Adjust command/callback for CSS files compressing:
'cssCompressor' => 'java -jar yuicompressor.jar --type css {from} -o
{tol}',
// Whether to delete asset source after compression:
'deleteSource' => false,
// The list of asset bundles to compress:
'bundles' => [
// 'yii\web\Viidsset',
// 'yit\web\Jquerydsset',
1,
// Asset bundle for compression output:
'targets' => [
'all' => [
'class' => 'yiilweb\AssetBundle',
'basePath' => 'Q@uwebroot/assets',
'baseUrl' => 'Qweb/assets',
'js' => 'js/all-{hash}.js',
'css' => 'css/all-{hash}.css',
1,
1,
// Asset manager configuration:
'assetManager' => [
1,
1;

You should modify this file and specify which bundles you plan to combine in
the bundles option. In the targets option you should specify how the bundles

should be divided into groups. You can specify one or multiple groups, as
aforementioned.

Note: Because the alias ewebroot and eweb are not available in
the console application, you should explicitly define them in the
configuration.

JavaScript files are combined, compressed and written to js/all-{hash}.js
where {hash} is replaced with the hash of the resulting file.

The jsCompressor and cssCompressor options specify the console commands
or PHP callbacks for performing JavaScript and CSS combining/compressing.
By default, Yii uses Closure Compiler?! for combining JavaScript files and
YUI Compressor?? for combining CSS files. You should install those tools
manually or adjust these options to use your favorite tools.

“nttps://developers.google.com/closure/compiler/
“Ihttps://github.com/yui/yuicompressor/

https://developers.google.com/closure/compiler/
https://github.com/yui/yuicompressor/

142 CHAPTER 3. APPLICATION STRUCTURE

With the configuration file, you can run the asset command to combine
and compress the asset files and then generate a new asset bundle configur-
ation file assets-prod.php:

yii asset assets.php config/assets-prod.php

The generated configuration file can be included in the application configur-
ation, like described in the last subsection.

Note: in case you customize asset bundles for your application
via yii\web\AssetManager: :$bundles or yii\web\AssetManager
: :$assetMap and want this customization to be applied for the
compression source files, you should include these options to the
assetManager section inside asset command configuration file.

Note: while specifying the compression source, you should avoid
the use of asset bundles whose parameters may be adjusted dy-
namically (e.g. at init() method or after registration), since they
may work incorrectly after compression.

Info: Using the asset command is not the only option to auto-
mate the asset combining and compressing process. You can use
the excellent task runner tool grunt*® to achieve the same goal.

Grouping Asset Bundles

In the last subsection, we have explained how to combine all asset bundles
into a single one in order to minimize the HTTP requests for asset files
referenced in an application. This is not always desirable in practice. For
example, imagine your application has a “front end” as well as a “back end”,
each of which uses a different set of JavaScript and CSS files. In this case,
combining all asset bundles from both ends into a single one does not make
sense, because the asset bundles for the “front end” are not used by the “back
end” and it would be a waste of network bandwidth to send the “back end”
assets when a “front end” page is requested.

To solve the above problem, you can divide asset bundles into groups and
combine asset bundles for each group. The following configuration shows how
you can group asset bundles:

return [

// Specify output bundles with groups:
'targets' => [
'allShared' => [
'js' => 'js/all-shared-{hash}.js',

“3http://gruntjs.com/

http://gruntjs.com/

3.12. EXTENSIONS 143

'css' => 'css/all-shared-{hash}.css',
'depends' => [
// Include all assets shared between 'backend' and
'frontend’
'yii\web\YiiAsset',
'app\assets\SharedAsset',
1,
1,
'allBackEnd' => [
'js' => 'js/all-{hash}.js',
'css' => 'css/all-{hash}.css',
'depends' => [
// Include only 'backend' assets:
'app\assets\AdminAsset'
1,
1,
'allFrontEnd' => [
'js' => 'js/all-{hash}.js',
'css' => 'css/all-{hash}.css',
'depends' => [1, // Include all remaining assets

As you can see, the asset bundles are divided into three groups: allShared,
allBackEnd and allFrontEnd. They each depends on an appropriate set of asset
bundles. For example, allBackEnd depends on app\assets\AdminAsset. When
running asset command with this configuration, it will combine asset bundles
according to the above specification.

Info: You may leave the depends configuration empty for one of
the target bundle. By doing so, that particular asset bundle will
depend on all of the remaining asset bundles that other target
bundles do not depend on.

3.12 Extensions

Extensions are redistributable software packages specifically designed to be
used in Yii applications and provide ready-to-use features. For example, the
yiisoft /yii2-debug® extension adds a handy debug toolbar at the bottom
of every page in your application to help you more easily grasp how the
pages are generated. You can use extensions to accelerate your development
process. You can also package your code as extensions to share with other
people your great work.

“nttps://github.com/yiisoft/yii2-debug

https://github.com/yiisoft/yii2-debug

144 CHAPTER 3. APPLICATION STRUCTURE

Info: We use the term “extension” to refer to Yii-specific software
packages. For general purpose software packages that can be used
without Yii, we will refer to them using the term “package” or
“library”.

3.12.1 Using Extensions

To use an extension, you need to install it first. Most extensions are distrib-
uted as Composer®® packages which can be installed by taking the following
two simple steps:

1. modify the composer. json file of your application and specify which ex-
tensions (Composer packages) you want to install.

2. run composer install to install the specified extensions.

Note that you may need to install Composer® if you do not have it.

By default, Composer installs packages registered on Packagist?” - the
biggest repository for open source Composer packages. You can look for
extensions on Packagist. You may also create your own repository*® and
configure Composer to use it. This is useful if you are developing private
extensions that you want to share within your projects only.

Extensions installed by Composer are stored in the BasePath/vendor direct-
ory, where BasePath refers to the application’s base path. Because Composer
is a dependency manager, when it installs a package, it will also install all
its dependent packages.

For example, to install the yiisoft/yii2-imagine extension, modify your
composer . json like the following:

{
7]
"require": {
//| |-] lother] [dependencies
"yiisoft/yii2-imagine": "x"
) }

After the installation, you should see the directory yiisoft/yii2-imagine under
BasePath/vendor. You should also see another directory imagine/imagine which
contains the installed dependent package.

“®https://getcomposer.org/

“https://getcomposer.org/

Thttps://packagist.org/
“®https://getcomposer.org/doc/05-repositories.md#repository

https://getcomposer.org/
https://getcomposer.org/
https://packagist.org/
https://getcomposer.org/doc/05-repositories.md#repository

3.12. EXTENSIONS 145

Info: The yiisoft/yii2-imagine is a core extension developed and
maintained by the Yii developer team. All core extensions are
hosted on Packagist®® and named like yiisoft/yii2-xyz, where xyz
varies for different extensions.

Now you can use the installed extensions like they are part of your applic-
ation. The following example shows how you can use the yii\imagine\Image
class provided by the yiisoft/yii2-imagine extension:

use Yii;
use yii\imagine\Image;

// generate a thumbnail image

Image: :thumbnail (' @webroot/img/test-image.jpg', 120, 120)
->save(Yii::getAlias('@runtime/thumb-test-image.jpg'), ['quality' =>
501);

Info: Extension classes are autoloaded by the Yii class auto-
loader.

Installing Extensions Manually

In some rare occasions, you may want to install some or all extensions manu-
ally, rather than relying on Composer. To do so, you should:

1. download the extension archive files and unpack them in the vendor
directory.

2. install the class autoloaders provided by the extensions, if any.

3. download and install all dependent extensions as instructed.

If an extension does not have a class autoloader but follows the PSR-4 stand-
ard®®, you may use the class autoloader provided by Yii to autoload the
extension classes. All you need to do is just to declare a root alias for the
extension root directory. For example, assuming you have installed an ex-
tension in the directory vendor/mycompany/myext, and the extension classes are
under the myext namespace, then you can include the following code in your
application configuration:

[
'aliases' => [
'@myext' => '@vendor/mycompany/myext',

]’

Onttps://packagist.org/
*Onttp://www.php-fig.org/psr/psr-4/

https://packagist.org/
http://www.php-fig.org/psr/psr-4/

146 CHAPTER 3. APPLICATION STRUCTURE

3.12.2 Creating Extensions

You may consider creating an extension when you feel the need to share with
other people your great code. An extension can contain any code you like,
such as a helper class, a widget, a module, etc.

It is recommended that you create an extension in terms of a Composer
package®! so that it can be more easily installed and used by other users, as
described in the last subsection.

Below are the basic steps you may follow to create an extension as a
Composer package.

1. Create a project for your extension and host it on a VCS repository,
such as github.com®?. The development and maintenance work for the
extension should be done on this repository.

2. Under the root directory of the project, create a file named composer. json
as required by Composer. Please refer to the next subsection for more
details.

3. Register your extension with a Composer repository, such as Pack-
agist®®, so that other users can find and install your extension using
Composer.

Each Composer package must have a composer. json file in its root directory.
The file contains the metadata about the package. You may find complete
specification about this file in the Composer Manual®*. The following ex-
ample shows the composer. json file for the yiisoft/yii2-imagine extension:

{
"name": "yiisoft/yii2-imagine",
"type": "yii2-extension",
"description": "The Imagine integration for the Yii framework",
"keywords": ["yii2", "imagine", "image", "helper"],

"license": "BSD-3-Clause",
"support": {

"issues":
"https://github.com/yiisoft/yii2/issues?labels=ext}3Aimagine",
"forum": "https://forum.yiiframework.com/",

Shttps://getcomposer.org/

*https://github. com

Shttps://packagist.org/
Shttps://getcomposer.org/doc/01-basic-usage . md#composer- json-project-setup

https://getcomposer.org/
https://github.com
https://packagist.org/
https://getcomposer.org/doc/01-basic-usage.md#composer-json-project-setup

3.12. EXTENSIONS 147

"wiki": "https://www.yiiframework.com/wiki/",
"irc": "ircs://irc.libera.chat:6697/yii",
"source": "https://github.com/yiisoft/yii2"

},
"authors": [
{
"name": "Antonio Ramirez",
"email": "amigo.cobos@gmail.com"
}
1,

‘package‘ ‘dependencies
"require": {
"yiisoft/yii2": "72.0.0",
"imagine/imagine": "v0.5.0"

},

‘class‘ autoloading‘ ‘specs‘
"autoload": {
"psr-4": {
"yii\\imagine\\": ""

}

Package Name FEach Composer package should have a package name
which uniquely identifies the package among all others. The format of pack-
age names is vendorName/projectName. For example, in the package name
yiisoft/yii2-imagine, the vendor name and the project name are yiisoft and
yii2-imagine, respectively.

Do NOT use yiisoft as your vendor name as it is reserved for use by the
Yii core code.

We recommend you prefix yii2- to the project name for packages rep-
resenting Yii 2 extensions, for example, myname/yii2-mywidget. This will allow
users to more easily tell whether a package is a Yii 2 extension.

Package Type It is important that you specify the package type of your

extension as yii2-extension so that the package can be recognized as a Yii

extension when being installed.

When a user runs composer install to install an extension, the file vendor/yiisoft/extensions.php

will be automatically updated to include the information about the new

extension. From this file, Yii applications can know which extensions are

installed (the information can be accessed via yii\base\Application::

$extensions).

Dependencies Your extension depends on Yii (of course). So you should
list it (yiisoft/yii2) in the require entry in composer.json. If your extension
also depends on other extensions or third-party libraries, you should list

148 CHAPTER 3. APPLICATION STRUCTURE

them as well. Make sure you also list appropriate version constraints (e.g.
1.%, @estable) for each dependent package. Use stable dependencies when your
extension is released in a stable version.

Most JavaScript/CSS packages are managed using Bower®® and /or NPM%6,
instead of Composer. Yii uses the Composer asset plugin®’ to enable man-
aging these kinds of packages through Composer. If your extension depends
on a Bower package, you can simply list the dependency in composer. json like
the following:

{
@ ‘package‘ ‘dependencies‘
"require": {
"bower-asset/jquery": ">=1.11.%"
}
}

The above code states that the extension depends on the jquery Bower pack-
age. In general, you can use bower-asset/PackageName to refer to a Bower
package in composer.json, and use npm-asset/PackageName to refer to a NPM
package. When Composer installs a Bower or NPM package, by default the
package content will be installed under the evendor/vower/PackageName and
@vendor/npm/Packages directories, respectively. These two directories can also
be referred to using the shorter aliases @bower/PackageName and @npm/PackageName.

For more details about asset management, please refer to the Assets
section.

Class Autoloading In order for your classes to be autoloaded by the Yii
class autoloader or the Composer class autoloader, you should specify the
autoload entry in the composer.json file, like shown below:

{ —_—
i
"autoload": {
"psr-4": {
"yii\\imagine\\": ""
}
}
}

You may list one or multiple root namespaces and their corresponding file
paths.

When the extension is installed in an application, Yii will create for each
listed root namespace an alias that refers to the directory corresponding to

Shttp://bower.io/
Shttps://www.npmjs.com/
SThttps://github. com/fxpio/composer-asset-plugin

http://bower.io/
https://www.npmjs.com/
https://github.com/fxpio/composer-asset-plugin

3.12. EXTENSIONS 149

the namespace. For example, the above autoload declaration will correspond
to an alias named @yii/imagine.

Recommended Practices

Because extensions are meant to be used by other people, you often need to
make an extra effort during development. Below we introduce some common
and recommended practices in creating high quality extensions.

Namespaces To avoid name collisions and make the classes in your ex-
tension autoloadable, you should use namespaces and name the classes in
your extension by following the PSR-4 standard®® or PSR-0 standard®®.

Your class namespaces should start with vendorName\extensionName, where
extensionName is similar to the project name in the package name except that
it should not contain the yii2- prefix. For example, for the yiisoft/yii2-imagine
extension, we use yii\imagine as the namespace for its classes.

Do not use yii, yii2 or yiisoft as your vendor name. These names are
reserved for use by the Yii core code.

Bootstrapping Classes Sometimes, you may want your extension to
execute some code during the bootstrapping process stage of an applica-
tion. For example, your extension may want to respond to the application’s
beginRequest event to adjust some environment settings. While you can in-
struct users of the extension to explicitly attach your event handler in the
extension to the beginRequest event, a better way is to do this automatically.

To achieve this goal, you can create a so-called bootstrapping class by
implementing yii\base\BootstrapInterface. For example,

namespace myname\mywidget;

use yii\base\BootstrapInterface;
use yii\base\Application;

class MyBootstrapClass implements BootstrapInterface

{
public function bootstrap($app)
{
$app->on(Application: :EVENT_BEFORE_REQUEST, function () {
// do something here
b;
}
}

You then list this class in the composer. json file of your extension like follows,

*http://www.php-fig.org/psr/psr-4/
*http://www.php-fig.org/psr/psr-0/

http://www.php-fig.org/psr/psr-4/
http://www.php-fig.org/psr/psr-0/

150 CHAPTER 3. APPLICATION STRUCTURE

{
7
"extra": {
"bootstrap": "myname\\mywidget\\MyBootstrapClass"
}
X

When the extension is installed in an application, Yii will automatically
instantiate the bootstrapping class and call its bootstrap() method during
the bootstrapping process for every request.

Working with Databases Your extension may need to access databases.
Do not assume that the applications that use your extension will always use
Yii::$db as the DB connection. Instead, you should declare a db property
for the classes that require DB access. The property will allow users of your
extension to customize which DB connection they would like your extension
to use. As an example, you may refer to the yii\caching\DbCache class
and see how it declares and uses the db property.

If your extension needs to create specific DB tables or make changes to
DB schema, you should

e provide migrations to manipulate DB schema, rather than using plain

SQL files;
e try to make the migrations applicable to different DBMS;
e avoid using Active Record in the migrations.

Using Assets If your extension is a widget or a module, chances are that
it may require some assets to work. For example, a module may display
some pages which contain images, JavaScript, and CSS. Because the files of
an extension are all under the same directory which is not Web accessible
when installed in an application, you have two choices to make the asset files
directly accessible via Web:

e ask users of the extension to manually copy the asset files to a specific
Web-accessible folder;

e declare an asset bundle and rely on the asset publishing mechanism
to automatically copy the files listed in the asset bundle to a Web-
accessible folder.

We recommend you use the second approach so that your extension can be
more easily used by other people. Please refer to the Assets section for more
details about how to work with assets in general.

Internationalization and Localization Your extension may be used
by applications supporting different languages! Therefore, if your extension
displays content to end users, you should try to internationalize and localize
it. In particular,

3.12. EXTENSIONS 151

o [f the extension displays messages intended for end users, the messages
should be wrapped into vii::t() so that they can be translated. Mes-
sages meant for developers (such as internal exception messages) do
not need to be translated.

o If the extension displays numbers, dates, etc., they should be formatted
using yii\il8n\Formatter with appropriate formatting rules.

For more details, please refer to the Internationalization section.

Testing You want your extension to run flawlessly without bringing prob-
lems to other people. To reach this goal, you should test your extension
before releasing it to public.

It is recommended that you create various test cases to cover your exten-
sion code rather than relying on manual tests. Each time before you release
a new version of your extension, you may simply run these test cases to make
sure everything is in good shape. Yii provides testing support, which can
help you to more easily write unit tests, acceptance tests and functionality
tests. For more details, please refer to the Testing section.

Versioning You should give each release of your extension a version num-
ber (e.g. 1.0.1). We recommend you follow the semantic versioning® prac-
tice when determining what version numbers should be used.

Releasing To let other people know about your extension, you need to
release it to the public.

If it is the first time you are releasing an extension, you should register
it on a Composer repository, such as Packagist®!. After that, all you need
to do is simply create a release tag (e.g. vi.0.1) on the VCS repository of
your extension and notify the Composer repository about the new release.
People will then be able to find the new release, and install or update the
extension through the Composer repository.

In the releases of your extension, in addition to code files, you should
also consider including the following to help other people learn about and
use your extension:

e A readme file in the package root directory: it describes what your
extension does and how to install and use it. We recommend you write
it in Markdown®? format and name the file as readme.md.

e A changelog file in the package root directory: it lists what changes
are made in each release. The file may be written in Markdown format
and named as changelog.md.

5%http://semver.org
S'https://packagist.org/
52http://daringfireball .net/projects/markdown/

http://semver.org
https://packagist.org/
http://daringfireball.net/projects/markdown/

152

CHAPTER 3. APPLICATION STRUCTURE

e An upgrade file in the package root directory: it gives the instructions

on how to upgrade from older releases of the extension. The file may
be written in Markdown format and named as upgrade.md.

Tutorials, demos, screenshots, etc.: these are needed if your extension
provides many features that cannot be fully covered in the readme file.
API documentation: your code should be well documented to allow
other people to more easily read and understand it. You may refer to
the BaseObject class file®® to learn how to document your code.

Info: Your code comments can be written in Markdown format.
The yiisoft/yii2-apidoc extension provides a tool for you to gen-
erate pretty API documentation based on your code comments.

Info: While not a requirement, we suggest your extension adhere
to certain coding styles. You may refer to the core framework
code style®?.

3.12.3 Core Extensions

Yii provides the following core extensions (or “Official Extensions”®) that
are developed and maintained by the Yii developer team. They are all re-
gistered on Packagist®® and can be easily installed as described in the Using
Extensions subsection.

e yiisoft /yii2-apidoc®”: provides an extensible and high-performance API

documentation generator. It is also used to generate the core frame-
work API documentation.

yiisoft /yii2-authclient®®: provides a set of commonly used auth clients,
such as Facebook OAuth2 client, GitHub OAuth2 client.

yiisoft /yii2-bootstrap®’: provides a set of widgets that encapsulate the
Bootstrap™ components and plugins.

yiisoft /yii2-debug’: provides debugging support for Yii applications.
When this extension is used, a debugger toolbar will appear at the
bottom of every page. The extension also provides a set of standalone
pages to display more detailed debug information.

%3https://github.com/yiisoft/yii2/blob/master/framework/base/Baselbject.

php

5https://github.com/yiisoft/yii2/blob/master/docs/internals/
core-code-style.md
5https://www.yiiframework.com/extensions/official
5https://packagist.org/
5"https://www.yiiframework.com/extension/yiisoft/yii2-apidoc
5https://www.yiiframework.com/extension/yiisoft/yii2-authclient
5nttps://www.yiiframework.com/extension/yiisoft/yii2-bootstrap
http://getbootstrap.com/
"https://www.yiiframework.com/extension/yiisoft/yii2-debug

https://github.com/yiisoft/yii2/blob/master/framework/base/BaseObject.php
https://github.com/yiisoft/yii2/blob/master/framework/base/BaseObject.php
https://github.com/yiisoft/yii2/blob/master/docs/internals/core-code-style.md
https://github.com/yiisoft/yii2/blob/master/docs/internals/core-code-style.md
https://www.yiiframework.com/extensions/official
https://packagist.org/
https://www.yiiframework.com/extension/yiisoft/yii2-apidoc
https://www.yiiframework.com/extension/yiisoft/yii2-authclient
https://www.yiiframework.com/extension/yiisoft/yii2-bootstrap
http://getbootstrap.com/
https://www.yiiframework.com/extension/yiisoft/yii2-debug

3.12. EXTENSIONS 153

yiisoft /yii2-elasticsearch”: provides the support for using Elasticsearch™.
It includes basic querying/search support and also implements the Act-
ive Record pattern that allows you to store active records in Elastic-
search.

yiisoft /yii2-faker”™: provides the support for using Faker”™ to generate
fake data for you.

yiisoft /yii2-gii’: provides a Web-based code generator that is highly
extensible and can be used to quickly generate models, forms, modules,
CRUD, etc.

e yiisoft /yii2-httpclient””: provides an HTTP client.

e yiisoft /yii2-imagine™: provides commonly used image manipulation
functions based on Imagine™.

yiisoft /yii2-jui®®: provides a set of widgets that encapsulate the JQuery
UI®! interactions and widgets.

yiisoft /yii2-mongodb®?: provides the support for using MongoDB®3.

It includes features such as basic query, Active Record, migrations,
caching, code generation, etc.

yiisoft /yii2-queue®: provides the supports for running tasks asyn-
chronously via queues. It supports queues based on DB, Redis, Rab-
bitMQ, AMQP, Beanstalk and Gearman.

yiisoft /yii2-redis®®: provides the support for using redis®®. It includes
features such as basic query, Active Record, caching, etc.

e yiisoft /yii2-shell®”: provides an interactive shell based on psysh®s.

e yiisoft /yii2-smarty®: provides a template engine based on Smarty™.
e yiisoft /yii2-sphinx”!: provides the support for using Sphinx®?. It in-
cludes features such as basic query, Active Record, code generation,

“hitps://www.
Shttps://www.
https://wuw.
“https://www.
https://www.
"https://wuw.
https://www.

yiiframework.

elastic.co/

yiiframework.

yiiframework

yiiframework.
yiiframework.
yiiframework.

com/extension/yiisoft/yii2-elasticsearch

com/extension/yiisoft/yii2-faker
.com/extension/fzaninotto/Faker
com/extension/yiisoft/yii2-gii
com/extension/yiisoft/yii2-httpclient
com/extension/yiisoft/yii2-imagine

™http://imagine.readthedocs.org/
8%https://www.yiiframework.com/extension/yiisoft/yii2- jui
8lhttp://jqueryui.com/
82https://www.yiiframework.
83https://www.mongodb. com/
8https://www.yiiframework.
8https://www.yiiframework.
86http://redis.io/
8"https://www.yiiframework.
88http://psysh.org/
89https://www.yiiframework.
Ohttp://www.smarty.net/
Mhttps://www.yiiframework.
92http://sphinxsearch.com

com/extension/yiisoft/yii2-mongodb

com/extension/yiisoft/yii2-queue
com/extension/yiisoft/yii2-redis

com/extension/yiisoft/yii2-shell
com/extension/yiisoft/yii2-smarty

com/extension/yiisoft/yii2-sphinx

https://www.yiiframework.com/extension/yiisoft/yii2-elasticsearch
https://www.elastic.co/
https://www.yiiframework.com/extension/yiisoft/yii2-faker
https://www.yiiframework.com/extension/fzaninotto/Faker
https://www.yiiframework.com/extension/yiisoft/yii2-gii
https://www.yiiframework.com/extension/yiisoft/yii2-httpclient
https://www.yiiframework.com/extension/yiisoft/yii2-imagine
http://imagine.readthedocs.org/
https://www.yiiframework.com/extension/yiisoft/yii2-jui
http://jqueryui.com/
https://www.yiiframework.com/extension/yiisoft/yii2-mongodb
https://www.mongodb.com/
https://www.yiiframework.com/extension/yiisoft/yii2-queue
https://www.yiiframework.com/extension/yiisoft/yii2-redis
http://redis.io/
https://www.yiiframework.com/extension/yiisoft/yii2-shell
http://psysh.org/
https://www.yiiframework.com/extension/yiisoft/yii2-smarty
http://www.smarty.net/
https://www.yiiframework.com/extension/yiisoft/yii2-sphinx
http://sphinxsearch.com

154 CHAPTER 3. APPLICATION STRUCTURE

ete.
e yiisoft /yii2-swiftmailer®®: provides email sending features based on
swiftmailer??.
e yiisoft /yii2-twig?: provides a template engine based on Twig?.
The following official extensions are for Yii 2.1 and above. You don’t need
to install them for Yii 2.0, since they are included in the core framework.
e yiisoft /yii2-captcha®": provides an CAPTCHA.
e yiisoft /yii2-jquery”®: provides a support for jQuery””.
e yiisoft /yii2-maskedinput!?’: provides a masked input widget based on
jQuery Input Mask plugin'©!.
e yiisoft /yii2-mssql'®2: provides the support for using MSSQL!%3.
e yiisoft /yii2-oracle!?*: provides the support for using Oracle!?.
e yiisoft /yii2-rest'?6: provides a support for the REST API.

Shttps://www.yiiframework.com/extension/yiisoft/yii2-swiftmailer
Ynttp://swiftmailer.org/
%https://www.yiiframework.com/extension/yiisoft/yii2-twig
https://twig.symfony.com/
https://www.yiiframework.com/extension/yiisoft/yii2-captcha
®https://www.yiiframework.com/extension/yiisoft/yii2- jquery
“nttps://jquery.com/
100https://wuw.yiiframework.com/extension/yiisoft/yii2-maskedinput
10lhttp: //robinherbots.github. io/Inputmask/
102https://www.yiiframework. com/extension/yiisoft/yii2-mssql
103https://www.microsoft.com/sql-server/

104 ttps://www.yiiframework. com/extension/yiisoft/yii2-oracle
105https://www.oracle. com/
106https://wuw.yiiframework.com/extension/yiisoft/yii2-rest

https://www.yiiframework.com/extension/yiisoft/yii2-swiftmailer
http://swiftmailer.org/
https://www.yiiframework.com/extension/yiisoft/yii2-twig
https://twig.symfony.com/
https://www.yiiframework.com/extension/yiisoft/yii2-captcha
https://www.yiiframework.com/extension/yiisoft/yii2-jquery
https://jquery.com/
https://www.yiiframework.com/extension/yiisoft/yii2-maskedinput
http://robinherbots.github.io/Inputmask/
https://www.yiiframework.com/extension/yiisoft/yii2-mssql
https://www.microsoft.com/sql-server/
https://www.yiiframework.com/extension/yiisoft/yii2-oracle
https://www.oracle.com/
https://www.yiiframework.com/extension/yiisoft/yii2-rest

Chapter 4

Handling Requests

4.1 Overview

Each time when a Yii application handles a request, it undergoes a similar
workflow.

1. A user makes a request to the entry script web/index.php.

2. The entry script loads the application configuration and creates an
application instance to handle the request.

3. The application resolves the requested route with the help of the re-
quest application component.

4. The application creates a controller instance to handle the request.

5. The controller creates an action instance and performs the filters for
the action.

6. If any filter fails, the action is cancelled.
7. If all filters pass, the action is executed.
8. The action loads a data model, possibly from a database.
9. The action renders a view, providing it with the data model.
10. The rendered result is returned to the response application component.

11. The response component sends the rendered result to the user’s browser.

The following diagram shows how an application handles a request.

155

156 CHAPTER 4. HANDLING REQUESTS

entry script application

@ load app config resolve route €—— 33— request component
->

user —1
run application 22— create controller
4

A
controller

create action

5

1 database
[} perform filters
(|
w

7
¥

load model B model

|

Y 14

response component <€ 10 render view g — view

|

In this section, we will describe in detail how some of these steps work.

4.2 Bootstrapping

Bootstrapping refers to the process of preparing the environment before an
application starts to resolve and process an incoming request. Bootstrapping
is done in two places: the entry script and the application.

In the entry script, class autoloaders for different libraries are registered.
This includes the Composer autoloader through its autoload.php file and the
Yii autoloader through its vii class file. The entry script then loads the
application configuration and creates an application instance.

In the constructor of the application, the following bootstrapping work
is done:

1. preInit() is called, which configures some high priority application
properties, such as basePath.

2. Register the error handler.

3. Initialize application properties using the given application configura-
tion.

4. init () is called which in turn calls bootstrap() to run bootstrapping
components.

4.3. ROUTING AND URL CREATION 157

e Include the extension manifest file vendor/yiisoft/extensions.php.

e Create and run bootstrap components declared by extensions.

e Create and run application components and/or modules that are
declared in the application’s bootstrap property.

Because the bootstrapping work has to be done before handling every re-
quest, it is very important to keep this process light and optimize it as much
as possible.

Try not to register too many bootstrapping components. A bootstrap-
ping component is needed only if it wants to participate the whole life cycle
of requesting handling. For example, if a module needs to register additional
URL parsing rules, it should be listed in the bootstrap property so that the
new URL rules can take effect before they are used to resolve requests.

In production mode, enable a bytecode cache, such as PHP OPcache! or
APC?, to minimize the time needed for including and parsing PHP files.

Some large applications have very complex application configurations
which are divided into many smaller configuration files. If this is the case,
consider caching the whole configuration array and loading it directly from
cache before creating the application instance in the entry script.

4.3 Routing and URL Creation

When a Yii application starts processing a requested URL, the first step it
takes is to parse the URL into a route. The route is then used to instantiate
the corresponding controller action to handle the request. This whole process
is called routing.

The reverse process of routing is called URL creation, which creates a
URL from a given route and the associated query parameters. When the
created URL is later requested, the routing process can resolve it back into
the original route and query parameters.

The central piece responsible for routing and URL creation is the URL
manager, which is registered as the uriManager application component. The
URL manager provides the parseRequest () method to parse an incoming re-
quest into a route and the associated query parameters and the createUrl ()
method to create a URL from a given route and its associated query para-
meters.

By configuring the uriManager component in the application configura-
tion, you can let your application recognize arbitrary URL formats without
modifying your existing application code. For example, you can use the
following code to create a URL for the post/view action:

"https://www.php.net/manual/en/intro.opcache.php
“https://www.php.net/manual/en/book.apcu. php

https://www.php.net/manual/en/intro.opcache.php
https://www.php.net/manual/en/book.apcu.php

158 CHAPTER 4. HANDLING REQUESTS

use yii\helpers\Url;

// Url::to() calls UrlManager::createlUrl() to create a URL
$url = Url::to(['post/view', 'id' => 100]);

Depending on the urlManager configuration, the created URL may look like
one of the following (or other format). And if the created URL is requested
later, it will still be parsed back into the original route and query parameter
value.

/index.php?r=post%2Fview&id=100
/index.php/post/100
/posts/100

4.3.1 URL Formats

The URL manager supports two URL formats:

e the default URL format;

e the pretty URL format.

The default URL format uses a query parameter named r to represent the
route and normal query parameters to represent the query parameters asso-
ciated with the route. For example, the URL /index.php?r=post/view&id=100
represents the route post/view and the id query parameter 100. The default
URL format does not require any configuration of the URL manager and
works in any Web server setup.

The pretty URL format uses the extra path following the entry script
name to represent the route and the associated query parameters. For ex-
ample, the extra path in the URL /index.php/post/100 is /post/100 which may
represent, the route post/view and the id query parameter 100 with a proper
URL rule. To use the pretty URL format, you will need to design a set of
URL rules according to the actual requirement about how the URLs should
look like.

You may switch between the two URL formats by toggling the enablePrettyUrl
property of the URL manager without changing any other application code.

4.3.2 Routing

Routing involves two steps:
e the incoming request is parsed into a route and the associated query
parameters;
e a controller action corresponding to the parsed route is created to
handle the request.
When using the default URL format, parsing a request into a route is as
simple as getting the value of a GET query parameter named r.
When using the pretty URL format, the URL manager will examine the
registered URL rules to find matching one that can resolve the request into

4.3. ROUTING AND URL CREATION 159

a route. If such a rule cannot be found, a yii\web\NotFoundHttpException
exception will be thrown.

Once the request is parsed into a route, it is time to create the controller
action identified by the route. The route is broken down into multiple parts
by the slashes in it. For example, site/index will be broken into site and
index. Each part is an ID which may refer to a module, a controller or an
action. Starting from the first part in the route, the application takes the
following steps to create modules (if any), controller and action:

1. Set the application as the current module.

2. Check if the controller map of the current module contains the cur-
rent ID. If so, a controller object will be created according to the
controller configuration found in the map, and Step 5 will be taken to
handle the rest part of the route.

3. Check if the ID refers to a module listed in the modules property
of the current module. If so, a module is created according to the
configuration found in the module list, and Step 2 will be taken to
handle the next part of the route under the context of the newly created
module.

4. Treat the ID as a controller ID and create a controller object. Do the
next step with the rest part of the route.

5. The controller looks for the current ID in its action map. If found,
it creates an action according to the configuration found in the map.
Otherwise, the controller will attempt to create an inline action which
is defined by an action method corresponding to the current action ID.

Among the above steps, if any error occurs, a yii\web\NotFoundHttpException
will be thrown, indicating the failure of the routing process.

Default Route

When a request is parsed into an empty route, the so-called default route
will be used, instead. By default, the default route is site/index, which
refers to the index action of the site controller. You may customize it by
configuring the defaultRoute property of the application in the application
configuration like the following:

// ...
'defaultRoute' => 'main/index',

1;

160 CHAPTER 4. HANDLING REQUESTS

Similar to the default route of the application, there is also a default route
for modules, so for example if there is a user module and the request is
parsed into the route user the module’s defaultRoute is used to determine
the controller. By default the controller name is default. If no action is
specified in defaultRoute, the defaultAction property of the controller
is used to determine the action. In this example, the full route would be

user/default/index.

Route

Sometimes, you may want to put your Web application in maintenance mode
temporarily and display the same informational page for all requests. There
are many ways to accomplish this goal. But one of the simplest ways is to
configure the yii\web\Application: :$catchAll property like the following
in the application configuration:

L

/7.

'catchAll' => ['site/offline'],
1;

With the above configuration, the site/offline action will be used to handle
all incoming requests.

The catchall property should take an array whose first element specifies a
route, and the rest of the elements (name-value pairs) specify the parameters
to be bound to the action.

Info: The debug toolbar?® in development environment will not
work when this property is enabled.
4.3.3 Creating URLs

Yii provides a helper method yii\helpers\Url::to() to create various
kinds of URLs from given routes and their associated query parameters.
For example,

use yii\helpers\Url;

// creates a URL to a route: /index.php?r=post/2Findex
echo Url::to(['post/index']);

// creates a URL to a route with parameters:
/index.php?r=post/2Fviewdid=100
echo Url::to(['post/view', 'id' => 100]);

// creates an anchored URL: /indexz.php?r=post/2Fviewéid=100#content

Shttps://github.com/yiisoft/yii2-debug/blob/master/docs/guide/README .md

https://github.com/yiisoft/yii2-debug/blob/master/docs/guide/README.md

4.3. ROUTING AND URL CREATION 161

echo Url::to(['post/view', 'id' => 100, '#' => 'content']);

// creates an absolute URL: http://www.ezample.com/index.php?r=post/2Findex
echo Url::to(['post/index'], true);

// creates an absolute URL using the https scheme:
https://www. ezample.com/index. php?r=post/2Findex
echo Url::to(['post/index'], 'https');

Note that in the above example, we assume the default URL format is being
used. If the pretty URL format is enabled, the created URLs will be different,
according to the URL rules in use.

The route passed to the yii\helpers\Url: :to() method is context sens-
itive. It can be either a relative route or an absolute route which will be
normalized according to the following rules:

e If the route is an empty string, the currently requested route will be

used;

e If the route contains no slashes at all, it is considered to be an action
ID of the current controller and will be prepended with the uniqueId
value of the current controller;

e If the route has no leading slash, it is considered to be a route relative
to the current module and will be prepended with the uniqueId value
of the current module.

Starting from version 2.0.2, you may specify a route in terms of an alias. If
this is the case, the alias will first be converted into the actual route which
will then be turned into an absolute route according to the above rules.

For example, assume the current module is admin and the current con-
troller is post,

use yii\helpers\Url;

// currently requested route: /indexz.php?r=adminj2Fpost/2Findec
echo Url::to(['']);

// a relative route with action ID only: /index.php?r=admin/2Fpost/2Findex
echo Url::to(['index']);

// a relative route: /index.php?r=admin/2Fpost/2Findex
echo Url::to(['post/index']);

// an absolute route: /index.php?r=post/2Findex
echo Url::to(['/post/index']);

// using an alias "@posts", which is defined as "/post/indez":
/index.php?r=postj2Findex
echo Url::to(['@posts']);

The yii\helpers\Url: :to() method is implemented by calling the createUrl ()
and createAbsoluteUrl() methods of the URL manager. In the next few

162 CHAPTER 4. HANDLING REQUESTS

subsections, we will explain how to configure the URL manager to customize
the format of the created URLs.

The yii\helpers\Url: :to() method also supports creating URLs that
are not related with particular routes. Instead of passing an array as its first
parameter, you should pass a string in this case. For example,

use yii\helpers\Url;

// currently requested URL: /index.php?r=admin/2Fpost/2Findex
echo Url::to();

// an aliased URL: http://exzample.com

Yii::setAlias('@example', 'http://example.com/');
echo Url::to('Qexample');

// an absolute URL: http://ezample.com/images/logo.gif
echo Url::to('/images/logo.gif', true);

Besides the to() method, the yii\helpers\Url helper class also provides
several other convenient URL creation methods. For example,

use yii\helpers\Url;

// home page URL: /indez.php?r=sitel2Findez
echo Url::home();

// the base URL, useful if the application is deployed in a sub-folder of
the Web root
echo Url::base();

// the canonical URL of the currently requested URL
// see https://en.wikipedia.org/wiki/Canonical_link_element
echo Url::canonical();

// remember the currently requested URL and retrieve it back in later
requests

Url: :remember();

echo Url::previous();

4.3.4 Using Pretty URLs

To use pretty URLs, configure the urlManager component in the application
configuration like the following:

L
'components' => [
'urlManager' => [
'enablePrettyUrl' => true,
'showScriptName' => false,
'enableStrictParsing' => false,
'rules' => [

/7.

4.3. ROUTING AND URL CREATION 163

The enablePrettyUrl property is mandatory as it toggles the pretty URL
format. The rest of the properties are optional. However, their configuration
shown above is most commonly used.

e showScriptName: this property determines whether the entry script
should be included in the created URLs. For example, instead of cre-
ating a URL /index.php/post/100, by setting this property to be false,
a URL /post/100 will be generated.

e enableStrictParsing: this property determines whether to enable
strict request parsing. If strict parsing is enabled, the incoming reques-
ted URL must match at least one of the rules in order to be treated as
a valid request, otherwise a yii\web\NotFoundHttpException will be
thrown. If strict parsing is disabled, when none of the rules matches
the requested URL, the path info part of the URL will be treated as
the requested route.

e rules: this property contains a list of rules specifying how to parse
and create URLs. It is the main property that you should work with in
order to create URLs whose format satisfies your particular application
requirement.

Note: In order to hide the entry script name in the created
URLs, besides setting showScriptName to be false, you may also
need to configure your Web server so that it can correctly identify
which PHP script should be executed when a requested URL
does not explicitly specify one. If you are using Apache or nginx
Web server, you may refer to the recommended configuration as
described in the Installation section.

URL Rules

A URL rule is a class implementing the yii\web\UrlRuleInterface, usually
yii\web\UrlRule. Each URL rule consists of a pattern used for matching
the path info part of URLSs, a route, and a few query parameters. A URL
rule can be used to parse a request if its pattern matches the requested URL.
A URL rule can be used to create a URL if its route and query parameter
names match those that are given.

When the pretty URL format is enabled, the URL manager uses the URL
rules declared in its rules property to parse incoming requests and create
URLs. In particular, to parse an incoming request, the URL manager exam-
ines the rules in the order they are declared and looks for the first rule that
matches the requested URL. The matching rule is then used to parse the

164 CHAPTER 4. HANDLING REQUESTS

URL into a route and its associated parameters. Similarly, to create a URL,
the URL manager looks for the first rule that matches the given route and
parameters and uses that to create a URL.

You can configure yii\web\UrlManager: :$rules as an array with keys
being the patterns and values the corresponding routes. Each pattern-
route pair constructs a URL rule. For example, the following rules con-
figuration declares two URL rules. The first rule matches a URL posts and
maps it into the route post/index. The second rule matches a URL matching
the regular expression post/(\d+) and maps it into the route post/view and
defines a query parameter named id.

'rules' => [
'posts' => 'post/index',
'post/<id:\d+>' => 'post/view',

Info: The pattern in a rule is used to match the path info part of
a URL. For example, the path info of /index.php/post/1007source=ad
is post/100 (the leading and ending slashes are ignored) which
matches the pattern post/(\da+).

Besides declaring URL rules as pattern-route pairs, you may also declare
them as configuration arrays. Each configuration array is used to configure
a single URL rule object. This is often needed when you want to configure
other properties of a URL rule. For example,

'rules' => [
// ...other url rules...
[
'pattern' => 'posts',
'route' => 'post/index',
'suffix' => '.json',

])

By default if you do not specify the class option for a rule configuration,
it will take the default class yii\web\UrlRule, which is the default value
defined in yii\web\UrlManager: :$ruleConfig.

Named Parameters

A URL rule can be associated with named query parameters which are spe-
cified in the pattern in the format of <ParamName:RegExp>, where ParamName
specifies the parameter name and RegExp is an optional regular expression
used to match parameter values. If RegExp is not specified, it means the
parameter value should be a string without any slash.

4.3. ROUTING AND URL CREATION 165

Note: You can only use regular expressions inside of parameters.
The rest of a pattern is considered plain text.

When a rule is used to parse a URL, it will fill the associated parameters with
values matching the corresponding parts of the URL, and these parameters
will be made available in $_GET later by the request application component.
When the rule is used to create a URL, it will take the values of the provided
parameters and insert them at the places where the parameters are declared.

Let’s use some examples to illustrate how named parameters work. As-
sume we have declared the following three URL rules:

'rules' => [
'posts/<year:\d{4}>/<category>' => 'post/index',
'posts' => 'post/index',
'post/<id:\d+>' => 'post/view',

When the rules are used to parse URLs:

e /index.php/posts is parsed into the route post/index using the second
rule;

® /index.php/posts/2014/php is parsed into the route post/index, the year
parameter whose value is 2014 and the category parameter whose value
is php using the first rule;

® /index.php/post/100 is parsed into the route post/view and the id para-
meter whose value is 100 using the third rule;

® /index.php/posts/php Will cause a yii\web\NotFoundHttpException when

yii\web\UrlManager: : $enableStrictParsing is true, because it matches

none of the patterns. If yii\web\UrlManager: :$enableStrictParsing
is false (the default value), the path info part posts/php will be returned
as the route. This will either execute the corresponding action if it ex-
ists or throw a yii\web\NotFoundHttpException otherwise.
And when the rules are used to create URLs:
® Url::to(['post/index']) creates /index.php/posts using the second rule;

® Url::to(['post/index', 'year' => 2014, 'category' => 'php']) creates /index.php/posts/2014/php

using the first rule;
® Url::to(['post/view', 'id' => 100]) creates /index.php/post/100 using the
third rule;

® Url::to(['post/view', 'id' => 100, 'source' => 'ad']) creates /index.php/post/1007source=ad

using the third rule. Because the source parameter is not specified in
the rule, it is appended as a query parameter in the created URL.

® Url::to(['post/index', 'category' => 'php']) creates /index.php/post/index?category=php

using none of the rules. Note that since none of the rules applies, the
URL is created by simply appending the route as the path info and all
parameters as the query string part.

166 CHAPTER 4. HANDLING REQUESTS

Parameterizing Routes

You can embed parameter names in the route of a URL rule. This allows a
URL rule to be used for matching multiple routes. For example, the following
rules embed controller and action parameters in the routes.

'rules' => [
'<controller: (post|comment)>/create' => '<controller>/create',
'<controller: (post|comment)>/<id:\d+>/<action: (update|delete)>' =>
'<controller>/<action>',
'<controller: (post|comment)>/<id:\d+>' => '<controller>/view',
'<controller: (post|comment)>s' => '<controller>/index',

To parse a URL /index.php/comment/100/update, the second rule will apply,
which sets the controller parameter to be comment and action parameter to
be update. The route <controller>/<action> is thus resolved as comment/update.

Similarly, to create a URL for the route comment/index, the last rule will
apply, which creates a URL /index.php/comments.

Info: By parameterizing routes, it is possible to greatly reduce
the number of URL rules, which can significantly improve the
performance of URL manager.

Default Parameter Values

By default, all parameters declared in a rule are required. If a requested
URL does not contain a particular parameter, or if a URL is being created
without a particular parameter, the rule will not apply. To make some of
the parameters optional, you can configure the defaults property of a rule.
Parameters listed in this property are optional and will take the specified
values when they are not provided.

In the following rule declaration, the page and tag parameters are both
optional and will take the value of 1 and empty string, respectively, when
they are not provided.

'rules' => [
// ...other rules...

[
'pattern' => 'posts/<page:\d+>/<tag>',
'route' => 'post/index',
'defaults' => ['page' => 1, 'tag' => ''],
]’

The above rule can be used to parse or create any of the following URLs:
® /index.php/posts: page iS 1, tag is ‘.
® /index.php/posts/2: page IS 2, tag is ‘.

4.3. ROUTING AND URL CREATION 167

® /index.php/posts/2/news: page is 2, tag iS 'news'.

® /index.php/posts/news: page iS 1, tag iS 'news'.
Without using optional parameters, you would have to create 4 rules to
achieve the same result.

Note: If pattern contains only optional parameters and slashes,
first parameter could be omitted only if all other parameters are
omitted.

Rules with Server Names

It is possible to include Web server names in the patterns of URL rules.
This is mainly useful when your application should behave differently for
different Web server names. For example, the following rules will parse
the URL http://admin.example.com/login into the route admin/user/login and
http://www.example.com/login into site/login.

'rules' => [
'http://admin.example.com/login' => 'admin/user/login',
'http://www.example.com/login' => 'site/login',

You can also embed parameters in the server names to extract dynamic
information from them. For example, the following rule will parse the
URL http://en.example.com/posts into the route post/index and the parameter

language=en.

'rules' => [
'http://<language:\w+>.example.com/posts' => 'post/index',

]

Since version 2.0.11, you may also use protocol relative patterns that work
for both, http and nttps. The syntax is the same as above but skipping the
http: part, e.g.: '//www.example.com/login' => 'site/login'.

Note: Rules with server names should not include the subfolder

of the entry script in their patterns. For example, if the applica-
tions entry script is at http://www.example.com/sandbox/blog/index.php,
then you should use the pattern http://www.example.com/posts in-
stead of http://www.example.com/sandbox/blog/posts. This will al-
low your application to be deployed under any directory without
the need to change your url rules. Yii will automatically detect
the base url of the application.

168 CHAPTER 4. HANDLING REQUESTS

URL Suffixes

You may want to add suffixes to the URLs for various purposes. For example,
you may add .html to the URLS so that they look like URLs for static HT'ML
pages; you may also add .json to the URLs to indicate the expected content
type of the response. You can achieve this goal by configuring the yii
\web\UrlManager: : $suffix property like the following in the application
configuration:

[
/7
'components' => [
'urlManager' => [
'enablePrettyUrl' => true,
/7
'suffix' => '.html',
'rules' => [
/).
1,
1,
1,
]

The above configuration will allow the URL manager to recognize requested
URLs and also create URLs with .ntml as their suffix.

Tip: You may set / as the URL suffix so that the URLs all end
with a slash.

Note: When you configure a URL suffix, if a requested URL
does not have the suffix, it will be considered as an unrecognized
URL. This is a recommended practice for SEO (search engine
optimization) to avoid duplicate content on different URLs.

Sometimes you may want to use different suffixes for different URLs. This
can be achieved by configuring the suffix property of individual URL rules.
When a URL rule has this property set, it will override the suffix setting at
the URL manager level. For example, the following configuration contains a
customized URL rule which uses . json as its suffix instead of the global .html
suffix.

[
'components' => [
'urlManager' => [
'enablePrettyUrl' => true,
/.
'suffix' => '.html',
'rules' => [

/7.

4.3. ROUTING AND URL CREATION 169

'pattern' => 'posts',
'route' => 'post/index',
'suffix' => '.json',

HTTP Methods

When implementing RESTful APIs, it is commonly needed that the same
URL be parsed into different routes according to the HT'TP methods being
used. This can be easily achieved by prefixing the supported HT'TP methods
to the patterns of the rules. If a rule supports multiple HTTP methods,
separate the method names with commas. For example, the following rules
have the same pattern post/<id:\d+> with different HT'TP method support.
A request for PUT post/100 will be parsed into post/update, while a request for
GET post/100 will be parsed into post/view.

'rules' => [
'"PUT,POST post/<id:\d+>' => 'post/update',
'DELETE post/<id:\d+>' => 'post/delete',
'post/<id:\d+>' => 'post/view',

Note: If a URL rule contains HTTP method(s) in its pattern,
the rule will only be used for parsing purpose unless GET is among
the specified verbs. It will be skipped when the URL manager is
called to create URLs.

Tip: To simplify the routing of RESTful APIs, Yii provides a
special URL rule class yii\rest\UrlRule which is very efficient
and supports some fancy features such as automatic pluralization

of controller IDs. For more details, please refer to the Routing
section in the RESTful APIs chapter.

Adding Rules Dynamically

URL rules can be dynamically added to the URL manager. This is often
needed by redistributable modules which want to manage their own URL
rules. In order for the dynamically added rules to take effect during the
routing process, you should add them during the bootstrapping stage of
the application. For modules, this means they should implement yii\base
\BootstrapInterface and add the rules in the bootstrap() method like
the following:

170 CHAPTER 4. HANDLING REQUESTS

public function bootstrap($app)

{
$app->getUrlManager () ->addRules ([
// rule declarations here
], false);
}

Note that you should also list these modules in yii\web\Application::
bootstrap() so that they can participate the bootstrapping process.

Creating Rule Classes

Despite the fact that the default yii\web\UrlRule class is flexible enough

for the majority of projects, there are situations when you have to create

your own rule classes. For example, in a car dealer Web site, you may want

to support the URL format like /Manufacturer/Model, where both Manufacturer

and Model must match some data stored in a database table. The default

rule class will not work here because it relies on statically declared patterns.
We can create the following URL rule class to solve this problem.

<7php
namespace app\components;

use yii\web\UrlRulelInterface;
use yii\base\BaseObject;

class CarUrlRule extends BaseObject implements UrlRulelnterface

{

public function createUrl($manager, $route, $params)

{
if ($route === 'car/index') {
if (isset($params['manufacturer'], $params['model'])) {
return $params['manufacturer'] . '/' . $params['model'];
} elseif (isset($params['manufacturer'])) {
return $params['manufacturer'];
}
}
return false; // this rule does not apply
}

public function parseRequest($manager, $request)
{
$pathInfo = $request->getPathInfo();
if (preg_match('%~(\w+) (/(\w+))7$%', $pathInfo, $matches)) {
// check $matches[1] and $matches[3] to see
// if they match a manufacturer and a model in the database.
// If so, set $params['manufacturer'] and/or $params['model']
// and return ['car/index’', $params]
}
return false; // this rule does not apply

4.3. ROUTING AND URL CREATION 171

And use the new rule class in the yii\web\UrlManager: :$rules configura-
tion:

'rules' => [
// ...other rules...
[
'class' => 'app\components\CarUrlRule',
// ...configure other properties...

],

4.3.5 URL normalization

Since version 2.0.10 UrlManager can be configured to use UrlNormalizer for
dealing with variations of the same URL, for example with and without a
trailing slash. Because technically http://example.com/path and http://example.com/path/
are different URLs, serving the same content for both of them can degrade
SEO ranking. By default normalizer collapses consecutive slashes, adds or
removes trailing slashes depending on whether the suffix has a trailing slash
or not, and redirects to the normalized version of the URL using permanent
redirection?. The normalizer can be configured globally for the URL man-
ager or individually for each rule - by default each rule will use the normalizer
from URL manager. You can set UrlRule: :$normalizer to false to disable
normalization for particular URL rule.
The following shows an example configuration for the UrlNormalizer:

'urlManager' => [
'enablePrettyUrl' => true,
'showScriptName' => false,
'enableStrictParsing' => true,
'suffix' => '.html',
'normalizer' => [
'class' => 'yii\web\UrlNormalizer',
// use temporary redirection instead of permanent for debugging
'action' => UrlNormalizer::ACTION_REDIRECT_TEMPORARY,
]:
'rules' => [
// ...other rules...

[

'pattern' => 'posts',

'route' => 'post/index',

'suffix' => '/',

'normalizer' => false, // disable normalizer for this rule
1,
[

“https://en.wikipedia.org/wiki/HTTP_301

https://en.wikipedia.org/wiki/HTTP_301

172 CHAPTER 4. HANDLING REQUESTS

'pattern' => 'tags',

'route' => 'tag/index',

'normalizer' => [
// do mot collapse consecutive slashes for this rule
'collapseSlashes' => false,

1,

1,
1,

Note: by default UrlManager: :$normalizer is disabled. You
need to explicitly configure it in order to enable URL normaliz-
ation.

4.3.6 Performance Considerations

When developing a complex Web application, it is important to optimize
URL rules so that it takes less time to parse requests and create URLs.

By using parameterized routes, you may reduce the number of URL rules,
which can significantly improve performance.

When parsing or creating URLs, URL manager examines URL rules in the
order they are declared. Therefore, you may consider adjusting the order of
the URL rules so that more specific and/or more commonly used rules are
placed before less used ones.

If some URL rules share the same prefix in their patterns or routes,
you may consider using yii\web\GroupUrlRule so that they can be more
efficiently examined by URL manager as a group. This is often the case when
your application is composed by modules, each having its own set of URL
rules with module ID as their common prefixes.

4.4 Requests

Requests made to an application are represented in terms of yii\web\Request
objects which provide information such as request parameters, HI'TP head-

ers, cookies, etc. For a given request, you can get access to the corresponding

request object via the request application component which is an instance of

yii\web\Request, by default. In this section, we will describe how you can

make use of this component in your applications.

4.4.1 Request Parameters

To get request parameters, you can call get() and post() methods of the
request component. They return the values of $_GET and $_P0ST, respectively.
For example,

$request = Yii::$app->request;

4.4. REQUESTS 173

$get = $request->get();
// equivalent to: $get = $_GET;

$id = $request->get('id');
// equivalent to: $id = isset($_GET['id']) ? $_GET['id'] : null;

$id = $request->get('id', 1);
// equivalent to: $id = isset($_GET['id']) 2 $_GET['id'] : 1;

$post = $request->post();
// equivalent to: $post = $_POST;

$name = $request->post('name');
// equivalent to: $name = isset($_POST['name']) ? $_POST['name'] : null;

$name = $request->post('name', '');
// equivalent to: $name = isset($_POST['name']) ? $_POST['name'] : ''

Info: Instead of directly accessing $_GET and $_POST to retrieve
the request parameters, it is recommended that you get them via
the request component as shown above. This will make writing
tests easier because you can create a mock request component
with faked request data.

When implementing RESTful APIs, you often need to retrieve parameters
that are submitted via PUT, PATCH or other request methods. You can get
these parameters by calling the yii\web\Request: :getBodyParam() meth-
ods. For example,

$request = Yii::$app->request;

// returns all parameters
$params = $request->bodyParams;

// returns the parameter "id"
$param = $request->getBodyParam('id');

Info: Unlike GET parameters, parameters submitted via POST, PUT,
PATCH etc. are sent in the request body. The request component
will parse these parameters when you access them through the
methods described above. You can customize the way how these
parameters are parsed by configuring the yiil\web\Request::
$parsers property.

4.4.2 Request Methods

You can get the HT'TP method used by the current request via the expression
Yii::$app->request->method. A whole set of boolean properties is also provided
for you to check if the current method is of certain type. For example,

174 CHAPTER 4. HANDLING REQUESTS

$request = Yii::$app->request;

if ($request->ishAjax) { /* the request is an AJAX request */ }
if ($request->isGet) { /# the request method is GET */ }
if ($request->isPost) { /* the request method is POST */ }
if ($request->isPut) { /* the request method ts PUT */ }

4.4.3 Request URLs

The request component provides many ways of inspecting the currently re-
quested URL.
Assuming the URL being requested is http: //example.com/admin/index . php/product?id=100,
you can get various parts of this URL as summarized in the following;:
e url: returns /admin/index.php/product?id=100, which is the URL without
the host info part.
e absoluteUrl: returns http://example.com/admin/index.php/product?id=100,
which is the whole URL including the host info part.
e hostInfo: returns http://example.com, which is the host info part of the
URL.
e pathInfo: returns /product, which is the part after the entry script and
before the question mark (query string).
e queryString: returns id=100, which is the part after the question mark.
e baseUrl: returns /admin, which is the part after the host info and before
the entry script name.
e scriptUrl: returns /admin/index.php, which is the URL without path
info and query string.
e serverName: returns example.com, which is the host name in the URL.
e serverPort: returns 80, which is the port used by the Web server.

4.4.4 HTTP Headers

You can get the HT'TP header information through the header collection
returned by the yii\web\Request: :$headers property. For example,

// $headers is an object of yii\web\HeaderCollection
$headers = Yii::$app->request->headers;

// returns the Accept header value
$accept = $headers->get('Accept');

if ($headers->has('User-Agent')) { /* there is User-Agent header */ }

The request component also provides support for quickly accessing some
commonly used headers, including:
e userAgent: returns the value of the User-Agent header.
e contentType: returns the value of the Content-Type header which in-
dicates the MIME type of the data in the request body.

4.4. REQUESTS 175

e acceptableContentTypes: returns the content MIME types accept-
able by users. The returned types are ordered by their quality score.
Types with the highest scores will be returned first.

e acceptablelanguages: returns the languages acceptable by users. The
returned languages are ordered by their preference level. The first ele-
ment represents the most preferred language.

If your application supports multiple languages and you want to display
pages in the language that is the most preferred by the end user, you may use

the language negotiation method yii\web\Request: :getPreferredLanguage().
This method takes a list of languages supported by your application, com-
pares them with acceptableLanguages, and returns the most appropriate
language.

Tip: You may also use the ContentNegotiator filter to dynam-
ically determine what content type and language should be used
in the response. The filter implements the content negotiation
on top of the properties and methods described above.

4.4.5 Client Information

You can get the host name and IP address of the client machine through
userHost and userIP, respectively. For example,

$userHost = Yii::$app->request->userHost;
$userIP = Yii::$app->request->userIP;

4.4.6 Trusted proxies and headers

In the previous section you have seen how to get user information like host
and IP address. This will work out of the box in a normal setup where a
single webserver is used to serve the website. If your Yii application however
runs behind a reverse proxy, you need to add additional configuration to
retrieve this information as the direct client is now the proxy and the user
IP address is passed to the Yii application by a header set by the proxy.

You should not blindly trust headers provided by proxies unless you expli-
citly trust the proxy. Since 2.0.13 Yii supports configuring trusted proxies via
the trustedHosts, secureHeaders, ipHeaders and secureProtocolHeaders
properties of the request component.

The following is a request config for an application that runs behind an
array of reverse proxies, which are located in the 10.0.2.0/24 IP network:

'request' => [
/7.
'trustedHosts' => [
'10.0.2.0/24",
1,
1,

176 CHAPTER 4. HANDLING REQUESTS

The IP is sent by the proxy in the X-Forwarded-For header by default, and the
protocol (http or https) is sent in X-Forwarded-Proto.

In case your proxies are using different headers you can use the request
configuration to adjust these, e.g.:

'request' => [

// ...

'trustedHosts' => [
'10.0.2.0/24' => [

'X-ProxyUser-Ip',
'Front-End-Https',
1,

1,

'secureHeaders' => [
'X-Forwarded-For',
'X-Forwarded-Host',
'X-Forwarded-Proto',
'X-Proxy-User-Ip',
'Front-End-Https',

1,

'ipHeaders' => [
'X-Proxy-User-Ip',

1,

'secureProtocolHeaders' => [
'Front-End-Https' => ['on']

1,

1,

With the above configuration, all headers listed in secureHeaders are filtered
from the request, except the X-ProxyUser-Ip and Front-End-Https headers in
case the request is made by the proxy. In that case the former is used to
retrieve the user IP as configured in ipHeaders and the latter will be used to
determine the result of yii\web\Request: :getIsSecureConnection().
Since 2.0.31 RFC 7239° Forwarded header is supported. In order to enable
it you need to add header name to secureHeaders. Make sure your proxy is
setting it, otherwise end user would be able to spoof IP and protocol.

Already resolved user IP

If the user’s IP address is resolved before the Yii application (e.g. ngx_http_realip_module
or similar), the request component will work correctly with the following con-
figuration:

'request' => [

/..
'trustedHosts' => [
'0.0.0.0/0",

],

Shttps://datatracker.ietf.org/doc/html/rfc7239

https://datatracker.ietf.org/doc/html/rfc7239

4.5. RESPONSES 177

'ipHeaders' => [],

]7

In this case, the value of userIP will be equal to $_SERVER['REMOTE_ADDR'].
Also, properties that are resolved from HTTP headers will work correctly
(e.g. yii\web\Request: :getIsSecureConnection()).

Warning: The trustedHosts=['0.0.0.0/0'] setting assumes that
all IPs are trusted.

4.5 Responses

When an application finishes handling a request, it generates a response
object and sends it to the end user. The response object contains information
such as the HTTP status code, HTTP headers and body. The ultimate goal
of Web application development is essentially to build such response objects
upon various requests.

In most cases you should mainly deal with the response application com-
ponent which is an instance of yii\web\Response, by default. However, Yii
also allows you to create your own response objects and send them to end
users as we will explain in the following.

In this section, we will describe how to compose and send responses to
end users.

4.5.1 Status Code

One of the first things you would do when building a response is to state
whether the request is successfully handled. This is done by setting the
yii\web\Response: :$statusCode property which can take one of the valid
HTTP status codes®. For example, to indicate the request is successfully
handled, you may set the status code to be 200, like the following:

Yii::$app->response->statusCode = 200;

However, in most cases you do not need to explicitly set the status code.
This is because the default value of yii\web\Response::$statusCode is
200. And if you want to indicate the request is unsuccessful, you may throw
an appropriate HT'TP exception like the following:

throw new \yii\web\NotFoundHttpException;

When the error handler catches an exception, it will extract the status
code from the exception and assign it to the response. For the yii\web
\NotFoundHttpException above, it is associated with the HT'TP status 404.
The following HT'TP exceptions are predefined in Yii:

Shttps://tools.ietf.org/html/rfc2616#section-10

https://tools.ietf.org/html/rfc2616#section-10

178 CHAPTER 4. HANDLING REQUESTS

yii\web\BadRequestHttpException: status code 400.
yii\web\ConflictHttpException: status code 409.
yii\web\ForbiddenHttpException: status code 403.
yii\web\GoneHttpException: status code 410.
yii\web\MethodNotAllowedHttpException: status code 405.
yii\web\NotAcceptableHttpException: status code 406.
yii\web\NotFoundHttpException: status code 404.
yii\web\ServerErrorHttpException: status code 500.
yii\web\TooManyRequestsHttpException: status code 429.
yii\web\UnauthorizedHttpException: status code 401.

e yii\web\UnsupportedMediaTypeHttpException: status code 415.

If the exception that you want to throw is not among the above list, you may
create one by extending from yii\web\HttpException, or directly throw it
with a status code, for example,

throw new \yii\web\HttpException(402);

4.5.2 HTTP Headers

You can send HTTP headers by manipulating the header collection in
the response component. For example,

$headers = Yii::$app->response->headers;

// add a Pragma header. Ezisting Pragma headers will NOT be overwritten.
$headers->add('Pragma', 'no-cache');

// set a Pragma header. Any existing Pragma headers will be discarded.
$headers->set ('Pragma', 'no-cache');

// remove Pragma header(s) and return the removed Pragma header values in an
array
$values = $headers->remove('Pragma');

Info: Header names are case insensitive. And the newly re-
gistered headers are not sent to the user until the yii\web\Response
::send () method is called.

4.5.3 Response Body

Most responses should have a body which gives the content that you want
to show to end users.

If you already have a formatted body string, you may assign it to the
yii\web\Response: :$content property of the response. For example,

Yii::$app->response->content = 'hello world!';

4.5. RESPONSES 179

If your data needs to be formatted before sending it to end users, you should
set both of the format and data properties. The format property specifies
in which format the data should be formatted. For example,

$response = Yii::$app->response;
$response->format = \yii\web\Response: :FORMAT_JSON;
$response->data = ['message' => 'hello world'];

Yii supports the following formats out of the box, each implemented by a
formatter class. You can customize these formatters or add new ones by
configuring the yii\web\Response: :$formatters property.

e HTML: implemented by yii\web\HtmlResponseFormatter.
XML: implemented by yii\web\XmlResponseFormatter.
JSON: implemented by yii\web\JsonResponseFormatter.
JSONP: implemented by yii\web\JsonResponseFormatter.
RAW: use this format if you want to send the response directly without
applying any formatting.

While the response body can be set explicitly as shown above, in most cases
you may set it implicitly by the return value of action methods. A common
use case is like the following:

public function actionIndex()
{
return $this->render('index');

}

The index action above returns the rendering result of the index view. The
return value will be taken by the response component, formatted and then
sent to end users.

Because by default the response format is HTML, you should only return
a string in an action method. If you want to use a different response format,
you should set it first before returning the data. For example,

public function actionInfo()

{
\Yii::$app->response->format = \yii\web\Response::FORMAT_JSON;
return [
'message' => 'hello world',
'code' => 100,
1;
}

As aforementioned, besides using the default response application compon-
ent, you can also create your own response objects and send them to end
users. You can do so by returning such object in an action method, like the
following,

180 CHAPTER 4. HANDLING REQUESTS

public function actionInfo()

{
return \Yii::createObject([
'class' => 'yii\web\Response',
'format' => \yii\web\Response::FORMAT_JSON,
'data' => [
'message' => 'hello world',
'code' => 100,
1,
IDR
}

Note: If you are creating your own response objects, you will
not be able to take advantage of the configurations that you
set for the response component in the application configuration.
You can, however, use dependency injection to apply a common
configuration to your new response objects.

4.5.4 Browser Redirection

Browser redirection relies on sending a Location HT'TP header. Because this
feature is commonly used, Yii provides some special support for it.

You can redirect the user browser to a URL by calling the yii\web
\Response: :redirect () method. The method sets the appropriate Location
header with the given URL and returns the response object itself. In an
action method, you can call its shortcut version yii\web\Controller::
redirect (). For example,

public function action01d()
{

return $this->redirect('http://example.com/new', 301);
}

In the above code, the action method returns the result of the redirect()
method. As explained before, the response object returned by an action
method will be used as the response sending to end users.

In places other than an action method, you should call yii\web\Response
::redirect () directly followed by a chained call to the yii\web\Response
::send () method to ensure no extra content will be appended to the re-
sponse.

\Yii::$app->response->redirect('http://example.com/new', 301)->send();

Info: By default, the yii\web\Response: :redirect() method
sets the response status code to be 302 which instructs the browser
that the resource being requested is temporarily located in a dif-
ferent URI. You can pass in a status code 301 to tell the browser
that the resource has been permanently relocated.

4.5. RESPONSES 181

When the current request is an AJAX request, sending a Location header will
not automatically cause the browser to redirect. To solve this problem, the
yii\web\Response: :redirect () method sets an X-Redirect header with the
redirection URL as its value. On the client-side, you may write JavaScript
code to read this header value and redirect the browser accordingly.

Info: Yii comes with a yii.js JavaScript file which provides
a set of commonly used JavaScript utilities, including browser
redirection based on the x-Redirect header. Therefore, if you are
using this JavaScript file (by registering the yii\web\YiiAsset
asset bundle), you do not need to write anything to support
AJAX redirection. More information about yii.js can be found
in the Client Scripts Section.

4.5.5 Sending Files

Like browser redirection, file sending is another feature that relies on specific
HTTP headers. Yii provides a set of methods to support various file sending
needs. They all have built-in support for the HT'TP range header.
e yii\web\Response: :sendFile(): sends an existing file to a client.
e yii\web\Response: :sendContentAsFile(): sends a text string as a
file to a client.
e yii\web\Response: :sendStreamAsFile(): sends an existing file stream
as a file to a client.
These methods have the same method signature with the response object
as the return value. If the file to be sent is very big, you should consider
using yii\web\Response: :sendStreamAsFile () because it is more memory
efficient. The following example shows how to send a file in a controller
action:

public function actionDownload()
{

return \Yii::$app->response->sendFile('path/to/file.txt');
}

If you are calling the file sending method in places other than an action
method, you should also call the yii\web\Response: :send() method after-
wards to ensure no extra content will be appended to the response.

\Yii::$app->response->sendFile('path/to/file.txt')->send();

Some Web servers have a special file sending support called X-Sendfile. The
idea is to redirect the request for a file to the Web server which will directly
serve the file. As a result, the Web application can terminate earlier while
the Web server is sending the file. To use this feature, you may call the
yiil\web\Response: :xSendFile(). The following list summarizes how to
enable the X-Sendfile feature for some popular Web servers:

182 CHAPTER 4. HANDLING REQUESTS

Apache: X-Sendfile”

Lighttpd v1.4: X-LIGHTTPD-send-file®
Lighttpd v1.5: X-Sendfile”

Nginx: X-Accel-Redirect!'”

Cherokee: X-Sendfile and X-Accel-Redirect!!

4.5.6 Sending Response

The content in a response is not sent to the user until the yii\web\Response
::send () method is called. By default, this method will be called automat-
ically at the end of yii\base\Application::run(). You can, however,
explicitly call this method to force sending out the response immediately.

The yii\web\Response::send() method takes the following steps to
send out a response:

1. Trigger the yii\web\Response: :EVENT_BEFORE_SEND event.

2. Call yii\web\Response: :prepare() to format response data into
response content.

3. Trigger the yii\web\Response: :EVENT_AFTER_PREPARE event.

4. Call yii\web\Response::sendHeaders() to send out the registered
HTTP headers.

5. Call yii\web\Response: :sendContent () to send out the response body
content.

6. Trigger the yii\web\Response: :EVENT_AFTER_SEND event.

After the yii\web\Response: :send() method is called once, any further
call to this method will be ignored. This means once the response is sent
out, you will not be able to append more content to it.

As you can see, the yii\web\Response: :send () method triggers several
useful events. By responding to these events, it is possible to adjust or
decorate the response.

4.6 Sessions and Cookies

Sessions and cookies allow data to be persisted across multiple user requests.
In plain PHP you may access them through the global variables $_sess1on and

"https://tn123.org/mod_xsendfile

Shttps://redmine.lighttpd.net/projects/lighttpd/wiki/X-LIGHTTPD-send-file

https://redmine.lighttpd.net/projects/lighttpd/wiki/X-LIGHTTPD-send-file
YOhttps://www.nginx.com/resources/wiki/start/topics/examples/xsendfile/
Yhttp://www.cherokee-project.com/doc/other_goodies.html#x-sendfile

https://tn123.org/mod_xsendfile
https://redmine.lighttpd.net/projects/lighttpd/wiki/X-LIGHTTPD-send-file
https://redmine.lighttpd.net/projects/lighttpd/wiki/X-LIGHTTPD-send-file
https://www.nginx.com/resources/wiki/start/topics/examples/xsendfile/
http://www.cherokee-project.com/doc/other_goodies.html#x-sendfile

4.6. SESSIONS AND COOKIES 183

$_COOKIE, respectively. Yii encapsulates sessions and cookies as objects and
thus allows you to access them in an object-oriented fashion with additional
useful enhancements.

4.6.1 Sessions
Like requests and responses, you can get access to sessions via the session
application component which is an instance of yii\web\Session, by default.

Opening and Closing Sessions

To open and close a session, you can do the following:
$session = Yii::$app->session;

// check if a session is already open
if ($session->isActive)

// open a session
$session->open();

// close a session
$session->close();

// destroys all data registered to a session.
$session->destroy();

You can call open() and close() multiple times without causing errors;
internally the methods will first check if the session is already open.

Accessing Session Data

To access the data stored in session, you can do the following:
$session = Yii::$app->session;

// get a sesston variable. The following usages are equivalent:
$language = $session->get('language');

$language = $session['language'];

$language = isset($_SESSION['language']l) 7 $_SESSION['language']l : null;

// set a sesstion variable. The following usages are equivalent:
$session->set('language', 'en-US');

$session['language'] = 'en-US';

$_SESSION['language'] = 'en-US';

// remove a session variable. The following usages are equivalent:
$session->remove (' language');
unset ($session['language']);
unset ($_SESSION['language']);

184 CHAPTER 4. HANDLING REQUESTS

// check if a session variable exists. The following usages are equivalent:
if ($session->has('language'))

if (isset($session['language']))

if (isset($_SESSION['language']))

// traverse all session variables. The following usages are equivalent:
foreach ($session as $name => $value)
foreach ($_SESSION as $name => $value)

Info: When you access session data through the session compon-
ent, a session will be automatically opened if it has not been done
so before. This is different from accessing session data through
$_SESSION, which requires an explicit call of session_start().

When working with session data that are arrays, the session component has
a limitation which prevents you from directly modifying an array element.
For example,

$session = Yii::$app->session;

// the following code will NOT work
$session['captcha'] ['number'] = 5;
$session['captcha'] ['lifetime'] = 3600;

// the following code works:

$session['captcha'] = [
'number' => 5,
'lifetime' => 3600,

1;

// the following code also works:
echo $session['captcha']['lifetime'];

You can use one of the following workarounds to solve this problem:
$session = Yii::$app->session;

// directly use $_SESSION (make sure Yii::$app->session->open() has been
called)

$_SESSION['captcha']['number'] = 5;

$_SESSION['captcha']['lifetime'] = 3600;

// get the whole array first, modify it and then save it back
$captcha = $session['captcha'l;

$captchal'number'] = 5;

$captchal'lifetime'] = 3600;

$session['captcha'] = $captcha;

// use ArrayObject instead of array
$session['captcha'] = new \ArrayObject;

$session['captcha'] ['number'] = 5;

4.6. SESSIONS AND COOKIES 185

$session['captcha'] ['lifetime'] = 3600;

// store array data by keys with a common prefic
$session['captcha.number'] = 5;
$session['captcha.lifetime'] =

3600;

For better performance and code readability, we recommend the last work-
around. That is, instead of storing an array as a single session variable, you
store each array element as a session variable which shares the same key
prefix with other array elements.

Custom Session Storage

The default yii\web\Session class stores session data as files on the server.
Yii also provides the following session classes implementing different session
storage:
e yii\web\DbSession: stores session data in a database table.
e yii\web\CacheSession: stores session data in a cache with the help
of a configured cache component.
e yii\redis\Session: stores session data using redis'? as the storage
medium.
e yii\mongodb\Session: stores session data in a MongoDB!3.
All these session classes support the same set of API methods. As a result,
you can switch to a different session storage class without the need to modify
your application code that uses sessions.

Note: If you want to access session data via $_SESSION while
using custom session storage, you must make sure that the session
has already been started by yii\web\Session::open(). This is
because custom session storage handlers are registered within this
method.

Note: If you use a custom session storage you may need to con-
figure the session garbage collector explicitly. Some installations
of PHP (e.g. Debian) use a garbage collector probability of 0
and clean session files offline in a cronjob. This process does not
apply to your custom storage so you need to configure yii\web
\Session: :$GCProbability to use a non-zero value.

To learn how to configure and use these component classes, please refer to
their API documentation. Below is an example showing how to configure
yii\web\DbSession in the application configuration to use a database table
for session storage:

2https://redis.io/
Bhttps://www.mongodb.com/

https://redis.io/
https://www.mongodb.com/

186 CHAPTER 4. HANDLING REQUESTS

return [
'components' => [
'session' => [

'class' => 'yii\web\DbSession',
// 'db' => 'mydb', // the application component ID of the DB
connection. Defaults to 'db'.
// 'sessionTable' => 'my_session', // session table name.
Defaults to 'session'.

You also need to create the following database table to store session data:

CREATE TABLE session

(
id CHAR(40) NOT NULL PRIMARY KEY,
expire INTEGER,
data BLOB

where ‘BLOB’ refers to the BLOB-type of your preferred DBMS. Below are
the BLOB types that can be used for some popular DBMS:

e MySQL: LONGBLOB

e PostgreSQL: BYTEA

e MSSQL: BLOB

Note: According to the php.ini setting of session.hash_function,
you may need to adjust the length of the id column. For example,
if session.hash_function=sha256, you should use a length 64 instead
of 40.

Alternatively, this can be accomplished with the following migration:
<7php

use yii\db\Migration;

class m170529_050554_create_table_session extends Migration

{
public function up()

{
$this->createTable('{{)session}}', [
'id' => $this->char(64)->notNull(),
'expire' => $this->integer(),
'data' => $this->binary()
D;
$this->addPrimaryKey ('pk-id', '{{/session}}', 'id');
}

public function down()

4.6. SESSIONS AND COOKIES 187

{
$this->dropTable('{{)session}}"');
}
}
Flash Data

Flash data is a special kind of session data which, once set in one request, will
only be available during the next request and will be automatically deleted
afterwards. Flash data is most commonly used to implement messages that
should only be displayed to end users once, such as a confirmation message
displayed after a user successfully submits a form.

You can set and access flash data through the session application com-
ponent. For example,

$session = Yii::$app->session;

// Request #1

// set a flash message named as "postDeleted"
$session->setFlash('postDeleted', 'You have successfully deleted your
post.');

// Request #2
// display the flash message named "postDeleted"
echo $session->getFlash('postDeleted');

// Request #3
// $result will be false since the flash message was automatically deleted
$result = $session->hasFlash('postDeleted');

Like regular session data, you can store arbitrary data as flash data.

When you call yii\web\Session: :setFlash(), it will overwrite any ex-
isting flash data that has the same name. To append new flash data to
an existing message of the same name, you may call yii\web\Session::
addFlash() instead. For example:

$session = Yii::$app->session;

// Request #1

// add a few flash messages under the name of "alerts”
$session->addFlash('alerts', 'You have successfully deleted your post.');
$session->addFlash('alerts', 'You have successfully added a new friend.');
$session->addFlash('alerts', 'You are promoted.');

// Request #2
// $alerts is an array of the flash messages under the name of "alerts"”
$alerts = $session->getFlash('alerts');

Note: Try not to use yii\web\Session: :setFlash() together
with yii\web\Session::addFlash() for flash data of the same

188 CHAPTER 4. HANDLING REQUESTS

name. This is because the latter method will automatically turn
the flash data into an array so that it can append new flash data
of the same name. As a result, when you call yii\web\Session
::getFlash(), you may find sometimes you are getting an array
while sometimes you are getting a string, depending on the order
of the invocation of these two methods.

Tip: For displaying Flash messages you can use yii\bootstrap
\Alert widget in the following way:

echo Alert::widget ([

'options' => ['class' => 'alert-info'],

'body' => Yii::$app->session->getFlash('postDeleted'),
D;

4.6.2 Cookies

Yii represents each cookie as an object of yii\web\Cookie. Both yii\web
\Request and yii\web\Response maintain a collection of cookies via the
property named cookies. The cookie collection in the former represents the
cookies submitted in a request, while the cookie collection in the latter rep-
resents the cookies that are to be sent to the user.

The part of the application dealing with request and response directly is
controller. Therefore, cookies should be read and sent in controller.

Reading Cookies

You can get the cookies in the current request using the following code:

// get the cookie collection (yii\wedb\CookieCollection) from the "request”
component
$cookies = Yii::$app->request->cookies;

// get the "language" cookie value. If the cookie does not exist, return
"en" as the default value.
$language = $cookies->getValue('language', 'en');

"

// an alternative way of getting the "language" cookie value
if (($cookie = $cookies->get('language')) !== null) {
$language = $cookie->value;

}

// you may also use $cookies like an array
if (isset($cookies['language'])) {
$language = $cookies['language']->value;

}

// check if there is a "language" cookie
if ($cookies->has('language')) ...
if (isset($cookies['language'])) ...

4.6. SESSIONS AND COOKIES 189

Sending Cookies

You can send cookies to end users using the following code:

// get the cookie collection (yii\web|CookieCollection) from the "response"
component
$cookies = Yii::$app->response->cookies;

// add a new cookie to the response to be sent
$cookies->add(new \yii\web\Cookie ([

'name' => 'language',

'value' => 'zh-CN',

DD

// remove a cookie
$cookies->remove ('language');
// equivalent to the following
unset ($cookies['language']);

Besides the name, value properties shown in the above examples, the yii
\web\Cookie class also defines other properties to fully represent all avail-
able cookie information, such as domain, expire. You may configure these
properties as needed to prepare a cookie and then add it to the response’s
cookie collection.

Cookie Validation

When you are reading and sending cookies through the request and response
components as shown in the last two subsections, you enjoy the added secur-
ity of cookie validation which protects cookies from being modified on the
client-side. This is achieved by signing each cookie with a hash string, which
allows the application to tell if a cookie has been modified on the client-side.
If so, the cookie will NOT be accessible through the cookie collection of
the request component.

Note: Cookie validation only protects cookie values from being
modified. If a cookie fails the validation, you may still access it
through $_cookie. This is because third-party libraries may ma-
nipulate cookies in their own way, which does not involve cookie
validation.

Cookie validation is enabled by default. You can disable it by setting the yii
\web\Request: : $enableCookieValidation property to be false, although
we strongly recommend you do not do so.

Note: Cookies that are directly read/sent via $_CO0KIE and setcookie ()
will NOT be validated.

190 CHAPTER 4. HANDLING REQUESTS

When using cookie validation, you must specify a yii\web\Request: :$cookieValidationKey
that will be used to generate the aforementioned hash strings. You can do
so by configuring the request component in the application configuration:

return [
'components' => [
'request' => [
'cookieValidationKey' => 'fill in a secret key here',
1,
1,
1;

Info: cookieValidationKey is critical to your application’s se-
curity. It should only be known to people you trust. Do not store
it in the version control system.

4.6.3 Security settings

Both yii\web\Cookie and yii\web\Session support the following security
flags:

httpOnly

For better security, the default value of yii\web\Cookie: :$httpOnly and
the ‘httponly’ parameter of yiil\web\Session::$cookieParams is set to
true. This helps mitigate the risk of a client-side script accessing the pro-
tected cookie (if the browser supports it). You may read the HttpOnly wiki
article!® for more details.

secure

The purpose of the secure flag is to prevent cookies from being sent in clear
text. If the browser supports the secure flag it will only include the cookie
when the request is sent over a secure (TLS) connection. You may read the
SecureFlag wiki article'® for more details.

sameSite

Starting with Yii 2.0.21 the yii\web\Cookie: : $sameSite setting is suppor-
ted. It requires PHP version 7.3.0 or higher. The purpose of the sameSite
setting is to prevent CSRF (Cross-Site Request Forgery) attacks. If the
browser supports the sameSite setting it will only include the cookie accord-
ing to the specified policy (’Lax’ or ‘Strict’). You may read the SameSite wiki
article'® for more details. For better security, an exception will be thrown

Yhttps://owasp.org/www- community/HttpOnly
https://owasp.org/www- community/controls/SecureCookieAttribute
Yhttps://owasp.org/www- community/SameSite

https://owasp.org/www-community/HttpOnly
https://owasp.org/www-community/controls/SecureCookieAttribute
https://owasp.org/www-community/SameSite

4.7. HANDLING ERRORS 191

if sameSite is used with an unsupported version of PHP. To use this feature
across different PHP versions check the version first. E.g. “php |

'sameSite' => PHP_VERSION_ID >= 70300 7 yii\web\Cookie::SAME_SITE_LAX :
null,

| -~ > Note: Since not all browsers support the sameSite setting yet, it is still
strongly recommended to also include additional CSRF protection.

4.6.4 Session php.ini settings

As noted in PHP manual'”, php.ini has important session security settings.
Please ensure recommended settings are applied. Especially session.use_strict_mode
that is not enabled by default in PHP installations. This setting can also be

set with yii\web\Session::$useStrictMode.

4.7 Handling Errors

Yii includes a built-in error handler which makes error handling a much
more pleasant experience than before. In particular, the Yii error handler
does the following to improve error handling:
e All non-fatal PHP errors (e.g. warnings, notices) are converted into
catchable exceptions.
e Exceptions and fatal PHP errors are displayed with detailed call stack
information and source code lines in debug mode.
e Supports using a dedicated controller action to display errors.
e Supports different error response formats.
The error handler is enabled by default. You may disable it by defining
the constant YII_ENABLE_ERROR_HANDLER to be false in the entry script of your
application.

4.7.1 Using Error Handler

The error handler is registered as an application component named errorHandler.
You may configure it in the application configuration like the following;:

return [
'components' => [
'errorHandler' => [
'maxSourceLines' => 20,
1,
1,
1

https://www.php.net/manual/en/session.security.ini.php

https://www.php.net/manual/en/session.security.ini.php

192 CHAPTER 4. HANDLING REQUESTS

With the above configuration, the number of source code lines to be displayed
in exception pages will be up to 20.

As aforementioned, the error handler turns all non-fatal PHP errors into
catchable exceptions. This means you can use the following code to deal
with PHP errors:

use Yii;
use yii\base\ErrorException;

try {
10/0;
} catch (ErrorException $e) {

Yii::warning("Division by zero.");

}

// execution continues...

If you want to show an error page telling the user that his request is invalid
or unexpected, you may simply throw an HTTP exception, such as yii\web
\NotFoundHttpException. The error handler will correctly set the HI'TP
status code of the response and use an appropriate error view to display the
error message.

use yii\web\NotFoundHttpException;

throw new NotFoundHttpException();

4.7.2 Customizing Error Display

The error handler adjusts the error display according to the value of the
constant YII_DEBUG. When YII_DEBUG is true (meaning in debug mode), the
error handler will display exceptions with detailed call stack information and
source code lines to help easier debugging. And when YII_DEBUG is false, only
the error message will be displayed to prevent revealing sensitive information
about the application.

Info: If an exception is a descendant of yii\base\UserException,
no call stack will be displayed regardless the value of YII_DEBUG.
This is because such exceptions are considered to be caused by
user mistakes and the developers do not need to fix anything.

By default, the error handler displays errors using two views:
® Qyii/views/errorHandler/error.php: used when errors should be displayed
WITHOUT call stack information. When YII_DEBUG is false, this is the
only error view to be displayed.
® Qyii/views/errorHandler/exception.php: used when errors should be dis-
played WITH call stack information.
You can configure the errorView and exceptionView properties of the error
handler to use your own views to customize the error display.

4.7. HANDLING ERRORS 193

Using Error Actions

A better way of customizing the error display is to use dedicated error ac-
tions. To do so, first configure the errorAction property of the errorHandler
component like the following:

return [
'components' => [
'errorHandler' => [
'errorAction' => 'site/error',

]’
1;

The errorAction property takes a route to an action. The above config-
uration states that when an error needs to be displayed without call stack
information, the site/error action should be executed.

You can create the site/error action as follows,

namespace app\controllers;

use Yii;
use yii\web\Controller;

class SiteController extends Controller

{
public function actions()
{
return [
'error' => [
'class' => 'yii\web\ErrorAction',
1,
1;
}
}

The above code defines the error action using the yii\web\ErrorAction
class which renders an error using a view named error.

Besides using yii\web\ErrorAction, you may also define the error ac-
tion using an action method like the following,

public function actionError ()

{
$exception = Yii::$app->errorHandler->exception;
if ($exception !== null) {
return $this->render('error', ['exception' => $exception]);
}
}

You should now create a view file located at views/site/error.php. In this
view file, you can access the following variables if the error action is defined
as yii\web\ErrorAction:

194 CHAPTER 4. HANDLING REQUESTS

e name: the name of the error;

e message: the error message;

® exception: the exception object through which you can retrieve more
useful information, such as HTTP status code, error code, error call
stack, etc.

Info: If you are using the basic project template or the ad-
vanced project template!®, the error action and the error view
are already defined for you.

Note: If you need to redirect in an error handler, do it the
following way:

Yii::$app->getResponse()->redirect ($url)->send();
return;

Customizing Error Response Format

The error handler displays errors according to the format setting of the re-
sponse. If the response format is html, it will use the error or exception
view to display errors, as described in the last subsection. For other response
formats, the error handler will assign the array representation of the excep-
tion to the yii\web\Response: :$data property which will then be converted
to different formats accordingly. For example, if the response format is json,
you may see the following response:

HTTP/1.1 404 Not Found

Date: Sun, 02 Mar 2014 05:31:43 GMT

Server: Apache/2.2.26 (Unix) DAV/2 PHP/5.4.20 mod_ssl/2.2.26 OpenSSL/0.9.8y
Transfer-Encoding: chunked

Content-Type: application/json; charset=UTF-8

{
"name": "Not Found Exception",
"message": "The requested resource was not found.",
"code": O,
"status": 404
X

You may customize the error response format by responding to the beforeSend
event of the response component in the application configuration:

return [
/.
'components' => [
'response' => [

Bhttps://github.com/yiisoft/yii2-app-advanced/blob/master/docs/guide/
README . md

https://github.com/yiisoft/yii2-app-advanced/blob/master/docs/guide/README.md
https://github.com/yiisoft/yii2-app-advanced/blob/master/docs/guide/README.md

4.8. LOGGING 195

'class' => 'yii\web\Response',
'on beforeSend' => function ($event) {
$response = $event->sender;
if ($response->data !== null) {
$response->data = [
'success' => $response->isSuccessful,
'data' => $response->data,
1;

$response->statusCode = 200;

The above code will reformat the error response like the following:

HTTP/1.1 200 OK

Date: Sun, 02 Mar 2014 05:31:43 GMT

Server: Apache/2.2.26 (Unix) DAV/2 PHP/5.4.20 mod_ssl/2.2.26 OpenSSL/0.9.8y
Transfer-Encoding: chunked

Content-Type: application/json; charset=UTF-8

{
"success": false,
"data": {
"name": "Not Found Exception",
"message": "The requested resource was not found.",
"code": O,
"status": 404
3
}

4.8 Logging

Yii provides a powerful logging framework that is highly customizable and ex-
tensible. Using this framework, you can easily log various types of messages,
filter them, and gather them at different targets, such as files, databases,
emails.
Using the Yii logging framework involves the following steps:
e Record log messages at various places in your code;
e Configure log targets in the application configuration to filter and ex-
port log messages;
e Examine the filtered logged messages exported by different targets (e.g.
the Yii debugger).
In this section, we will mainly describe the first two steps.

196 CHAPTER 4. HANDLING REQUESTS

4.8.1 Log Messages

Recording log messages is as simple as calling one of the following logging
methods:
e Yii::debug(): record a message to trace how a piece of code runs.
This is mainly for development use.
e Yii::info(): record a message that conveys some useful information.
e Yii::warning(): record a warning message that indicates something
unexpected has happened.
e Yii::error(): record a fatal error that should be investigated as soon
as possible.
These logging methods record log messages at various severity levels and cat-
egories. They share the same function signature function ($message, $category
= 'application'), where $message stands for the log message to be recorded,
while $category is the category of the log message. The code in the following
example records a trace message under the default category application:

Yii::debug('start calculating average revenue');

Info: Log messages can be strings as well as complex data, such
as arrays or objects. It is the responsibility of log targets to
properly deal with log messages. By default, if a log message
is not a string, it will be exported as a string by calling yii
\helpers\VarDumper: :export ().

To better organize and filter log messages, it is recommended that you specify
an appropriate category for each log message. You may choose a hierarchical
naming scheme for categories, which will make it easier for log targets to filter
messages based on their categories. A simple yet effective naming scheme is
to use the PHP magic constant __METHOD__ for the category names. This is
also the approach used in the core Yii framework code. For example,

Yii: :debug('start calculating average revenue', __METHOD__);

The __METHOD__ constant evaluates as the name of the method (prefixed with
the fully qualified class name) where the constant appears. For example,
it is equal to the string 'app\controllers\RevenueController::calculate' if the
above line of code is called within this method.

Info: The logging methods described above are actually short-
cuts to the log() method of the logger object which is a
singleton accessible through the expression Yii: :getLogger). When
enough messages are logged or when the application ends, the
logger object will call a message dispatcher to send recorded
log messages to the registered log targets.

4.8. LOGGING 197

4.8.2 Log Targets

A log target is an instance of the yiil\log\Target class or its child class.
It filters the log messages by their severity levels and categories and then
exports them to some medium. For example, a database target exports
the filtered log messages to a database table, while an email target exports
the log messages to specified email addresses.

You can register multiple log targets in an application by configuring
them through the 10g application component in the application configuration,
like the following:

return [
// the "log" component must be loaded during bootstrapping time
'bootstrap' => ['log'l,
// the "log" component process messages with timestamp. Set PHP timezone
to create correct timestamp
'timeZone' => 'America/Los_Angeles',
'components' => [

'log' => [
'targets' => [
[
'class' => 'yii\log\DbTarget',
'levels' => ['error', 'warning'],
1,
[

'class' => 'yiillog\EmailTarget',
'levels' => ['error'l],
'categories' => ['yiildb\x'],
'message' => [
"from' => ['log@example.com'],
'to' => ['admin@example.com',
'developer@example.com'],
'subject' => 'Database errors at example.com',

]’

Note: The 10g component must be loaded during bootstrapping
time so that it can dispatch log messages to targets promptly.
That is why it is listed in the bootstrap array as shown above.

In the above code, two log targets are registered in the yii\log\Dispatcher
::$targets property:
o the first target selects error and warning messages and saves them in
a database table;
e the second target selects error messages under the categories whose
names start with yii\db\, and sends them in an email to both admin@example.com
and.developer@example.com.

198 CHAPTER 4. HANDLING REQUESTS

Yii comes with the following built-in log targets. Please refer to the API
documentation about these classes to learn how to configure and use them.
e yii\log\DbTarget: stores log messages in a database table.
e yiillog\EmailTarget: sends log messages to pre-specified email ad-
dresses.
e yiillog\FileTarget: saves log messages in files.
e yii\log\SyslogTarget: saves log messages to syslog by calling the
PHP function syslog().
In the following, we will describe the features common to all log targets.

Message Filtering

For each log target, you can configure its levels and categories properties
to specify which severity levels and categories of the messages the target
should process.

The levels property takes an array consisting of one or several of the
following values:

e crror: corresponding to messages logged by Yii::error().
warning: corresponding to messages logged by Yii::warning().
info: corresponding to messages logged by Yii::info().
trace: corresponding to messages logged by Yii: :debug().
profile: corresponding to messages logged by Yii::beginProfile()
and Yii::endProfile(), which will be explained in more details in
the Profiling subsection.

If you do not specify the levels property, it means the target will process
messages of any severity level.

The categories property takes an array consisting of message category
names or patterns. A target will only process messages whose category can
be found or match one of the patterns in this array. A category pattern
is a category name prefix with an asterisk * at its end. A category name
matches a category pattern if it starts with the same prefix of the pattern.
For example, yii\db\Command: :execute and yii\db\Command::query are used as
category names for the log messages recorded in the yii\db\Command class.
They both match the pattern yii\db\x.

If you do not specify the categories property, it means the target will
process messages of any category.

In addition to specifying allowed categories using the categories prop-
erty, you may also exclude certain categories by the except property. If
the category of a message is found or matches one of the patterns in this
property, it will NOT be processed by the target.

The following target configuration specifies that the target should only
process error and warning messages under the categories whose names match
either yii\db\# or yii\web\HttpException:*, but not yii\web\HttpException:404.

4.8. LOGGING 199

[
'class' => 'yiillog\FileTarget',
'levels' => ['error', 'warning'],
'categories' => [
'yii\db*',
'yii\web\HttpException:*',
1,
'except' => [
'yii\web\HttpException:404"',
1,
]

Info: When an HTTP exception is caught by the error hand-
ler, an error message will be logged with the category name in
the format of yii\web\HttpException:ErrorCode. For example, the
yii\web\NotFoundHttpException will cause an error message of
category yii\web\HttpException:404.

Message Formatting

Log targets export the filtered log messages in a certain format. For example,
if you install a log target of the class yii\log\FileTarget, you may find a
log message similar to the following in the runtime/log/app.1log file:

2014-10-04 18:10:15 [::1][1[-] [trace] [yii\base\Module: :getModule] Loading
module: debug

By default, log messages will be formatted as follows by the yii\log\Target
: :formatMessage ():

Timestamp [IP address] [User ID][Session ID] [Severity Level] [Category]
Message Text

You may customize this format by configuring the yii\log\Target: : $prefix
property which takes a PHP callable returning a customized message prefix.
For example, the following code configures a log target to prefix each log
message with the current user ID (IP address and Session ID are removed
for privacy reasons).

'class' => 'yiillog\FileTarget',
'prefix' => function ($message) {
$user = Yii::$app->has('user', true) 7 Yii::$app->get('user') :
null;
$userID = $user 7 $user->getId(false) : '-';
return "[$userID]";

200 CHAPTER 4. HANDLING REQUESTS

Besides message prefixes, log targets also append some context informa-
tion to each batch of log messages. By default, the values of these global
PHP variables are included: $_GET, $_P0OST, $_FILES, $_COOKIE, $_SESSION and
$_SERVER. You may adjust this behavior by configuring the yii\log\Target
: :$logVars property with the names of the global variables that you want
to include by the log target. For example, the following log target configur-
ation specifies that only the value of the $_SERVER variable will be appended
to the log messages.

[
'class' => 'yiillog\FileTarget',
'logVars' => ['_SERVER'],

You may configure logVars to be an empty array to totally disable the in-
clusion of context information. Or if you want to implement your own way
of providing context information, you may override the yii\log\Target::
getContextMessage () method.

In case some of your request fields contain sensitive information you
would not like to log (e.g. passwords, access tokens), you may additionally
configure maskVars property. By default, the following request parameters will
be masked with *xx: $_SERVER[HTTP_AUTHORIZATION], $_SERVER[PHP_AUTH_USER],
$_SERVER [PHP_AUTH_PW], but you can set your own:

L
'class' => 'yiillog\FileTarget',
'logVars' => ['_SERVER'],
'maskVars' => ['_SERVER.HTTP_X_PASSWORD']

Message Trace Level

During development, it is often desirable to see where each log message is
coming from. This can be achieved by configuring the tracelLevel property
of the 1og component like the following:

return [
'bootstrap' => ['log'],
'components' => [
'log' => [
'tracelLevel' => YII_DEBUG 7 3 : O,
'targets' => [...],

])
1;

The above application configuration sets traceLevel to be 3 if YII_DEBUG is
on and 0 if yI1_pDEBUG is off. This means, if YII_DEBUG is on, each log message

4.8. LOGGING 201

will be appended with at most 3 levels of the call stack at which the log
message is recorded; and if YII_DEBUG is off, no call stack information will be
included.

Info: Getting call stack information is not trivial. Therefore,
you should only use this feature during development or when
debugging an application.

Message Flushing and Exporting

As aforementioned, log messages are maintained in an array by the logger
object. To limit the memory consumption by this array, the logger will
flush the recorded messages to the log targets each time the array accumu-
lates a certain number of log messages. You can customize this number by
configuring the flushInterval property of the 1og component:

return [
'bootstrap' => ['log'],
'components' => [
'log' => [
'flushInterval' => 100, // default is 1000
"targets' => [...],

Info: Message flushing also occurs when the application ends,
which ensures log targets can receive complete log messages.

When the logger object flushes log messages to log targets, they do not
get exported immediately. Instead, the message exporting only occurs when
a log target accumulates certain number of the filtered messages. You can
customize this number by configuring the exportInterval property of indi-
vidual log targets, like the following,

[
'class' => 'yii\log\FileTarget',
'exportInterval' => 100, // default 4is 1000

Because of the flushing and exporting level setting, by default when you call
Yii::debug() or any other logging method, you will NOT see the log message
immediately in the log targets. This could be a problem for some long-
running console applications. To make each log message appear immediately
in the log targets, you should set both flushInterval and exportInterval
to be 1, as shown below:

202 CHAPTER 4. HANDLING REQUESTS

return [
'bootstrap' => ['log'],
'components' => [
'log' => [
'flushInterval' => 1,
'targets' => [
[
'class' => 'yiillog\FileTarget',
'exportInterval' => 1,

Note: Frequent message flushing and exporting will degrade the
performance of your application.

Toggling Log Targets

You can enable or disable a log target by configuring its enabled property.
You may do so via the log target configuration or by the following PHP
statement in your code:

Yii::$app->log->targets['file']->enabled = false;

The above code requires you to name a target as file, as shown below by
using string keys in the targets array:

return [
'bootstrap' => ['log'],
'components' => [

'log' => [
'targets' => [
'file' => [
'class' => 'yiillog\FileTarget',
1,
‘db' => [
'class' => 'yiillog\DbTarget',
1,
1,
1,

Since version 2.0.13, you may configure enabled with a callable to define a
dynamic condition for whether the log target should be enabled or not. See
the documentation of yii\log\Target: :setEnabled() for an example.

4.8. LOGGING 203

Creating New Targets

Creating a new log target class is very simple. You mainly need to implement
the yii\log\Target: :export () method sending the content of the yii\log
\Target: : $messages array to a designated medium. You may call the yii
\log\Target: : formatMessage () method to format each message. For more
details, you may refer to any of the log target classes included in the Yii
release.

Tip: Instead of creating your own loggers you may try any PSR-
3 compatible logger such as Monolog'® by using PSR log target

extension?V.

4.8.3 Performance Profiling

Performance profiling is a special type of message logging that is used to
measure the time taken by certain code blocks and find out what are the
performance bottlenecks. For example, the yii\db\Command class uses per-
formance profiling to find out the time taken by each DB query.

To use performance profiling, first identify the code blocks that need to
be profiled. Then enclose each code block like the following:

\Yii::beginProfile('myBenchmark') ;
...code block being profiled...

\Yii::endProfile('myBenchmark') ;

where myBenchmark stands for a unique token identifying a code block. Later
when you examine the profiling result, you will use this token to locate the
time spent by the corresponding code block.

It is important to make sure that the pairs of beginProfile and endProfile
are properly nested. For example,

\Yii::beginProfile('blockl');
// some code to be profiled
\Yii::beginProfile('block2');
// some other code to be profiled

\Yii::endProfile('block2');

\Yii::endProfile('blockl');

If you miss \Yii: :endProfile('blockl') or switch the order of \Yii::endProfile('blockl')
and \Yii::endProfile('block2'), the performance profiling will not work.

https://github.com/Seldaek/monolog
Onttps://github. com/samdark/yii2-psr-log-target

https://github.com/Seldaek/monolog
https://github.com/samdark/yii2-psr-log-target

204 CHAPTER 4. HANDLING REQUESTS

For each code block being profiled, a log message with the severity level
profile is recorded. You can configure a log target to collect such messages
and export them. The Yii debugger has a built-in performance profiling
panel showing the profiling results.

Chapter 5

Key Concepts

5.1 Components

Components are the main building blocks of Yii applications. Components
are instances of yii\base\Component, or an extended class. The three main
features that components provide to other classes are:

e Properties

e Events

e Behaviors
Separately and combined, these features make Yii classes much more custom-
izable and easier to use. For example, the included yii\jui\DatePicker, a
user interface component, can be used in a view to generate an interactive
date picker:

use yii\jui\DatePicker;

echo DatePicker: :widget ([
'language' => 'ru',
'name' => 'country',
'clientOptions' => [
'dateFormat' => 'yy-mm-dd',
1,
IDN

The widget’s properties are easily writable because the class extends yii
\base\Component.

While components are very powerful, they are a bit heavier than normal
objects, due to the fact that it takes extra memory and CPU time to support
event and behavior functionality in particular. If your components do not
need these two features, you may consider extending your component class
from yii\base\BaseObject instead of yii\base\Component. Doing so will
make your components as efficient as normal PHP objects, but with added
support for properties.

205

206 CHAPTER 5. KEY CONCEPTS

When extending your class from yii\base\Component or yii\base\BaseObject,

it is recommended that you follow these conventions:

e If you override the constructor, specify a $config parameter as the con-
structor’s last parameter, and then pass this parameter to the parent
constructor.

e Always call the parent constructor at the end of your overriding con-
structor.

o If you override the yii\base\BaseObject: :init () method, make sure
you call the parent implementation of init() at the beginning of your
init() method.

For example:

<7php
namespace yii\components\MyClass;
use yii\base\BaseObject;

class MyClass extends BaseObject
{

public $propl;

public $prop2;

public function

{

__construct($paraml, $param2, $config = [])

// ... initialization before configuration is applied

parent::__construct($config) ;

}

public function init()
{

parent::init();
// ... initialization after configuration is applied

}

Following these guidelines will make your components configurable when
they are created. For example:

$component = new MyClass(l, 2, ['propl' => 3, 'prop2' => 4]);
// alternatively
$component = \Yii::createObject([

'class' => MyClass::class,

'propl' => 3,
'prop2' => 4,
1, [1, 2D

Info: While the approach of calling Yii::createObject () looks
more complicated, it is more powerful because it is implemented
on top of a dependency injection container.

5.2. PROPERTIES 207

The yii\base\BaseObject class enforces the following object lifecycle:

1. Pre-initialization within the constructor. You can set default property
values here.

2. Object configuration via $config. The configuration may overwrite the
default values set within the constructor.

3. Post-initialization within init(). You may override this method to
perform sanity checks and normalization of the properties.

4. Object method calls.

The first three steps all happen within the object’s constructor. This means
that once you get a class instance (i.e., an object), that object has already
been initialized to a proper, reliable state.

5.2 Properties

In PHP, class member variables are also called properties. These variables
are part of the class definition, and are used to represent the state of a class
instance (i.e., to differentiate one instance of the class from another). In
practice, you may often want to handle the reading or writing of properties
in special ways. For example, you may want to always trim a string when
it is being assigned to a label property. You could use the following code to
achieve this task:

$object->label = trim($label);

The drawback of the above code is that you would have to call trim() every-
where in your code where you might set the 1abel property. If, in the future,
the 1avel property gets a new requirement, such as the first letter must be
capitalized, you would again have to modify every bit of code that assigns a
value to 1abel. The repetition of code leads to bugs, and is a practice you
want to avoid as much as possible.

To solve this problem, Yii introduces a base class called yii\base\BaseObject
that supports defining properties based on getter and setter class meth-
ods. If a class needs that functionality, it should extend from yii\base
\BaseObject, or from a child class.

Info: Nearly every core class in the Yii framework extends
from yii\base\BaseObject or a child class. This means, that
whenever you see a getter or setter in a core class, you can use it
like a property.

208 CHAPTER 5. KEY CONCEPTS

A getter method is a method whose name starts with the word get; a setter
method starts with set. The name after the get or set prefix defines the name
of a property. For example, a getter getLabel() and/or a setter setLabel()
defines a property named label, as shown in the following code:

namespace app\components;
use yii\base\BaseObject;

class Foo extends BaseObject

{
private $_label;
public function getLabel()
{
return $this->_label;
}
public function setLabel($value)
{
$this->_label = trim($value);
}
}

To be clear, the getter and setter methods create the property 1avel, which
in this case internally refers to a private property named _label.

Properties defined by getters and setters can be used like class member
variables. The main difference is that when such property is being read,
the corresponding getter method will be called; when the property is be-
ing assigned a value, the corresponding setter method will be called. For
example:

// equivalent to $label = $object->getlabel();
$label = $object->label;

// equivalent to $object->setLabel('abc');
$object->label = 'abc';

A property defined by a getter without a setter is read only. Trying to assign
a value to such a property will cause an InvalidCallException. Similarly,
a property defined by a setter without a getter is write only, and trying to
read such a property will also cause an exception. It is not common to have
write-only properties.
There are several special rules for, and limitations on, the properties
defined via getters and setters:
e The names of such properties are case-insensitive. For example, $object->label
and $object->Label are the same. This is because method names in PHP
are case-insensitive.

5.3. EVENTS 209

e [f the name of such a property is the same as a class member variable,
the latter will take precedence. For example, if the above Foo class has a
member variable 1abel, then the assignment $object->label = 'abc' will
affect the member variable 1abel; that line would not call the setLabel ()
setter method.

e These properties do not support visibility. It makes no difference to
the defining getter or setter method if the property is public, protected
or private.

e The properties can only be defined by non-static getters and/or setters.
Static methods will not be treated in the same manner.

e A normal call to property_exists() does not work to determine magic
properties. You should call canGetProperty() or canSetProperty()
respectively.

Returning back to the problem described at the beginning of this guide,
instead of calling trim() everywhere a label value is assigned, trim() now
only needs to be invoked within the setter setLabel(). And if a new require-
ment makes it necessary that the label be initially capitalized, the setLabel ()
method can quickly be modified without touching any other code. The one
change will universally affect every assignment to label.

5.3 Events

Events allow you to inject custom code into existing code at certain execution
points. You can attach custom code to an event so that when the event is
triggered, the code gets executed automatically. For example, a mailer object
may trigger a messageSent event when it successfully sends a message. If you
want to keep track of the messages that are successfully sent, you could then
simply attach the tracking code to the messageSent event.

Yii introduces a base class called yii\base\Component to support events.
If a class needs to trigger events, it should extend from yii\base\Component,
or from a child class.

5.3.1 Event Handlers

An event handler is a PHP callback! that gets executed when the event it is
attached to is triggered. You can use any of the following callbacks:
e a global PHP function specified as a string (without parentheses), e.g.,
'trim';
e an object method specified as an array of an object and a method name
as a string (without parentheses), e.g., [$object, 'methodName'l;
e a static class method specified as an array of a class name and a
method name as a string (without parentheses), e.g., ['ClassName',

"https://www.php.net/manual/en/language.types.callable.php

https://www.php.net/manual/en/language.types.callable.php

210 CHAPTER 5. KEY CONCEPTS

'methodName'];
e an anonymous function, e.g., function ($event) { ... }.
The signature of an event handler is:

function ($event) {
// $event is an object of yii\base|\Event or a child class

}

Through the $event parameter, an event handler may get the following in-
formation about the event that occurred:
e event name;
e event sender: the object whose trigger () method was called;
e custom data: the data that is provided when attaching the event
handler (to be explained next).

5.3.2 Attaching Event Handlers

You can attach a handler to an event by calling the yii\base\Component: :
on() method. For example:

$foo = new Foo();

// this handler is a global function
$foo->on(Foo: :EVENT_HELLO, 'function_name');

// this handler is an object method
$foo->on(Foo: :EVENT_HELLO, [$object, 'methodName']);

// this handler is a static class method
$foo->on(Foo: :EVENT_HELLO, ['app\components\Bar', 'methodName']);

// this handler is an anonymous function

$foo->on(Foo: :EVENT_HELLO, function ($event) {
// event handling logic

19N

You may also attach event handlers through configurations. For more details,
please refer to the Configurations section.

When attaching an event handler, you may provide additional data as
the third parameter to yii\base\Component::on(). The data will be made
available to the handler when the event is triggered and the handler is called.
For example:

// The following code will display "abc" when the event is triggered
// because $event->data contains the data passed as the 3rd argument to
"op !

$foo->on(Foo: :EVENT_HELLO, 'function_name', 'abc');

function function_name($event) {
echo $event->data;

}

5.3. EVENTS 211

5.3.3 Event Handler Order

You may attach one or more handlers to a single event. When an event is
triggered, the attached handlers will be called in the order that they were
attached to the event. If a handler needs to stop the invocation of the
handlers that follow it, it may set the yii\base\Event: : $handled property
of the $event parameter to be true:

$foo->on(Foo: :EVENT_HELLO, function ($event) {
$event->handled = true;

B,

By default, a newly attached handler is appended to the existing handler
queue for the event. As a result, the handler will be called in the last place
when the event is triggered. To insert the new handler at the start of the
handler queue so that the handler gets called first, you may call yii\base
\Component: :on(), passing false for the fourth parameter $append:

$foo->on(Foo: :EVENT_HELLO, function ($event) {
/7.
}, $data, false);

5.3.4 Triggering Events

Events are triggered by calling the yii\base\Component: :trigger () method.
The method requires an event name, and optionally an event object that de-
scribes the parameters to be passed to the event handlers. For example:

namespace app\components;

use yii\base\Component;
use yii\base\Event;

class Foo extends Component

{
const EVENT_HELLO = 'hello';
public function bar()
{
$this->trigger(self: :EVENT_HELLO);
}
}

With the above code, any calls to bar() will trigger an event named hello.

Tip: It is recommended to use class constants to represent event
names. In the above example, the constant EVENT_HELLO repres-
ents the hello event. This approach has three benefits. First,
it prevents typos. Second, it can make events recognizable for

212 CHAPTER 5. KEY CONCEPTS

IDE auto-completion support. Third, you can tell what events
are supported in a class by simply checking its constant declara-
tions.

Sometimes when triggering an event you may want to pass along additional
information to the event handlers. For example, a mailer may want to pass
the message information to the handlers of the messageSent event so that the
handlers can know the particulars of the sent messages. To do so, you can
provide an event object as the second parameter to the yii\base\Component
: :trigger () method. The event object must be an instance of the yii\base
\Event class or a child class. For example:

namespace app\components;

use yii\base\Component;
use yii\base\Event;

class MessageEvent extends Event

{
public $message;
}
class Mailer extends Component
{
const EVENT_MESSAGE_SENT = 'messageSent';
public function send($message)
{
// ...sending $message. ..
$event = new MessageEvent;
$event->message = $message;
$this->trigger(self: :EVENT_MESSAGE_SENT, $event);
}
}

When the yii\base\Component: :trigger () method is called, it will call all
handlers attached to the named event.
5.3.5 Detaching Event Handlers

To detach a handler from an event, call the yii\base\Component: :0ff ()
method. For example:

// the handler is a global function
$foo->off (Foo: :EVENT_HELLO, 'function_name');

// the handler is an object method
$foo->o0ff (Foo: :EVENT_HELLO, [$object, 'methodName'l);

5.3. EVENTS 213

// the handler is a static class method
$foo->o0ff (Foo: :EVENT_HELLO, ['app\components\Bar', 'methodName']);

// the handler %is an anonymous function
$foo->0ff (Foo: :EVENT_HELLO, $anonymousFunction);

Note that in general you should not try to detach an anonymous function
unless you store it somewhere when it is attached to the event. In the above
example, it is assumed that the anonymous function is stored as a variable
$anonymousFunction.

To detach all handlers from an event, simply call yii\base\Component
::0ff () without the second parameter:

$foo->off (Foo: :EVENT_HELLO) ;

5.3.6 Class-Level Event Handlers

The above subsections described how to attach a handler to an event on an
instance level. Sometimes, you may want to respond to an event triggered
by every instance of a class instead of only by a specific instance. Instead
of attaching an event handler to every instance, you may attach the handler
on the class level by calling the static method yii\base\Event::on().

For example, an Active Record object will trigger an EVENT_AFTER_INSERT
event whenever it inserts a new record into the database. In order to track
insertions done by every Active Record object, you may use the following
code:

use Yii;
use yii\base\Event;
use yii\db\ActiveRecord;

Event::on(ActiveRecord: :class, ActiveRecord::EVENT_AFTER_INSERT, function
($event) {
Yii::debug(get_class($event->sender) . ' is inserted');

B,

The event handler will be invoked whenever an instance of ActiveRecord, or
one of its child classes, triggers the EVENT_AFTER_INSERT event. In the hand-
ler, you can get the object that triggered the event through $event->sender.

When an object triggers an event, it will first call instance-level handlers,
followed by the class-level handlers.

You may trigger a class-level event by calling the static method yii\base
\Event: :trigger(). A class-level event is not associated with a particular
object. As a result, it will cause the invocation of class-level event handlers
only. For example:

use yii\base\Event;

214 CHAPTER 5. KEY CONCEPTS

Event::on(Foo::class, Foo::EVENT_HELLO, function ($event) {
var_dump($event->sender); // displays "null”

b;

Event::trigger(Foo::class, Foo::EVENT_HELLO);
Note that, in this case, $event->sender is null instead of an object instance.

Note: Because a class-level handler will respond to an event
triggered by any instance of that class, or any child classes, you
should use it carefully, especially if the class is a low-level base
class, such as yii\base\BaseObject.

To detach a class-level event handler, call yii\base\Event::off(). For
example:

// detach $handler
Event::off (Foo::class, Foo::EVENT_HELLO, $handler);

// detach all handlers of Foo::EVENT_HELLO
Event::off (Foo::class, Foo::EVENT_HELLO);

5.3.7 Events using interfaces

There is even more abstract way to deal with events. You can create a
separated interface for the special event and implement it in classes, where
you need it.

For example, we can create the following interface:

namespace app\interfaces;

interface DanceEventInterface

{
const EVENT_DANCE = 'dance';

And two classes, that implement it:

class Dog extends Component implements DanceEventInterface
{
public function meetBuddy()
{
echo "Woof!";
$this->trigger (DanceEventInterface: : EVENT_DANCE) ;

class Developer extends Component implements DanceEventInterface
{

public function testsPassed()

{

5.3. EVENTS 215

echo "Yay!";
$this->trigger (DanceEventInterface: :EVENT_DANCE) ;

To handle the EVENT_DANCE, triggered by any of these classes, call Event: :
on() and pass the interface class name as the first argument:

Event::on('app\interfaces\DanceEventInterface',

DanceEventInterface: :EVENT_DANCE, function ($event) {
Yii::debug(get_class($event->sender) . ' just danced'); // Will log that
Dog or Developer danced

b
You can trigger the event of those classes:

// trigger event for Dog class
Event::trigger(Dog: :class, DanceEventInterface::EVENT_DANCE) ;

// trigger event for Developer class
Event::trigger(Developer: :class, DanceEventInterface::EVENT_DANCE);

But please notice, that you can not trigger all the classes, that implement
the interface:

// DOES NOT WORK. Classes that tmplement this interface will NOT be
triggered.

Event::trigger('app\interfaces\DanceEventInterface',
DanceEventInterface: :EVENT_DANCE) ;

To detach event handler, call Event: :0ff (). For example:

// detaches $handler
Event::off ('app\interfaces\DanceEventInterface',
DanceEventInterface: :EVENT_DANCE, $handler);

// detaches all handlers of DanceEventInterface::EVENT_DANCE
Event::off ('app\interfaces\DanceEventInterface',
DanceEventInterface: :EVENT_DANCE) ;

5.3.8 Global Events

Yii supports a so-called global event, which is actually a trick based on the
event mechanism described above. The global event requires a globally ac-
cessible Singleton, such as the application instance itself.

To create the global event, an event sender calls the Singleton’s trigger)
method to trigger the event, instead of calling the sender’s own trigger ()
method. Similarly, the event handlers are attached to the event on the
Singleton. For example:

216 CHAPTER 5. KEY CONCEPTS

use Yii;
use yii\base\Event;
use app\components\Foo;

Yii::$app->on('bar', function ($event) {
echo get_class($event->sender); // displays "app\components\Foo"

b;

Yii::$app->trigger('bar', new Event(['sender' => new Fool));

A benefit of using global events is that you do not need an object when at-
taching a handler to the event which will be triggered by the object. Instead,
the handler attachment and the event triggering are both done through the
Singleton (e.g. the application instance).

However, because the namespace of the global events is shared by all
parties, you should name the global events wisely, such as introducing some
sort of namespace (e.g. “frontend.mail.sent”, “backend.mail.sent”).

5.3.9 Wildcard Events

Since 2.0.14 you can setup event handler for multiple events matching wild-
card pattern. For example:

use Yii;
$foo = new Foo();

$foo->on('foo.event.*', function ($event) {
// triggered for any event, which name starts on 'foo.event.'
Yii::debug('trigger event: ' . $event->name);

b
Wildcard patterns can be used for class-level events as well. For example:

use yii\base\Event;
use Yii;

Event::on('app\models*', 'before*', function ($event) {
// triggered for any class in namespace 'app\models' for any event,
which name starts on 'before’
Yii::debug('trigger event: ' . $event->name . ' for class:
get_class($event->sender));

B

This allows you catching all application events by single handler using fol-
lowing code:

use yii\base\Event;
use Yii;

Event::on('*x', 'x', function ($event) {

5.4. BEHAVIORS 217

// triggered for any event at any class
Yii::debug('trigger event: ' . $event->name);

B,

Note: usage wildcards for event handlers setup may reduce the
application performance. It is better to be avoided if possible.

In order to detach event handler specified by wildcard pattern, you should
repeat same pattern at yii\base\Component: :0ff () or yii\base\Event::
off () invocation. Keep in mind that passing wildcard during detaching of
event handler will detach only the handler specified for this wildcard, while
handlers attached for regular event names will remain even if they match the
pattern. For example:

use Yii;
$foo = new Foo();

// attach regular handler
$foo->on('event.hello', function ($event) {
echo 'direct-handler'

B,

// attach wildcard handler
$foo->on('*', function ($event) {
echo 'wildcard-handler'

B,

// detach wildcard handler only!
$foo->off('*');

$foo->trigger('event.hello'); // outputs: 'direct-handler’

5.4 Behaviors

Behaviors are instances of yii\base\Behavior, or of a child class. Beha-
viors, also known as mixins?, allow you to enhance the functionality of an
existing component class without needing to change the class’s inheritance.
Attaching a behavior to a component “injects” the behavior’s methods and
properties into the component, making those methods and properties ac-
cessible as if they were defined in the component class itself. Moreover, a
behavior can respond to the events triggered by the component, which allows
behaviors to also customize the normal code execution of the component.

“https://en.wikipedia.org/wiki/Mixin

https://en.wikipedia.org/wiki/Mixin

218 CHAPTER 5. KEY CONCEPTS

5.4.1 Defining Behaviors

To define a behavior, create a class that extends yii\base\Behavior, or
extends a child class. For example:

namespace app\components;
use yii\base\Behavior;

class MyBehavior extends Behavior

{
public $propi;
private $_prop2;
public function getProp2()
{
return $this->_prop2;
}
public function setProp2($value)
{
$this->_prop2 = $value;
}
public function foo()
{
/)
}
}

The above code defines the behavior class app\components\MyBehavior, with
two properties propi and prop2 and one method foo(). Note that property
prop2 is defined via the getter getProp2() and the setter setProp2(). This
is the case because yii\base\Behavior extends yii\base\BaseObject and
therefore supports defining properties via getters and setters.

Because this class is a behavior, when it is attached to a component, that
component will then also have the prop1 and prop2 properties and the foo()
method.

Tip: Within a behavior, you can access the component that
the behavior is attached to through the yii\base\Behavior::
$owner property.

Note: In case yii\base\Behavior::__get() and/or yii\base
\Behavior::__set () method of behavior is overridden you need
to override yii\base\Behavior: : canGetProperty () and/or yii
\base\Behavior: :canSetProperty () as well.

5.4. BEHAVIORS 219

5.4.2 Handling Component Events

If a behavior needs to respond to the events triggered by the component it is
attached to, it should override the yii\base\Behavior: :events() method.
For example:

namespace app\components;

use yii\db\ActiveRecord;
use yii\base\Behavior;

class MyBehavior extends Behavior

{
/7
public function events()
{
return [
ActiveRecord: :EVENT_BEFORE_VALIDATE => 'beforeValidate',
1;
}
public function beforeValidate($event)
{
/..
}
}

The events () method should return a list of events and their corresponding
handlers. The above example declares that the EVENT_BEFORE_VALIDATE
event exists and defines its handler, beforevalidate(). When specifying an
event handler, you may use one of the following formats:
e a string that refers to the name of a method of the behavior class, like
the example above
e an array of an object or class name, and a method name as a string
(without parentheses), e.g., [$object, 'methodName'l;
e an anonymous function
The signature of an event handler should be as follows, where $event refers
to the event parameter. Please refer to the Events section for more details
about events.

function ($event) {

}

5.4.3 Attaching Behaviors

You can attach a behavior to a component either statically or dynamically.
The former is more common in practice.

To attach a behavior statically, override the behaviors() method of the
component class to which the behavior is being attached. The behaviors()

220 CHAPTER 5. KEY CONCEPTS
method should return a list of behavior configurations. Each behavior con-
figuration can be either a behavior class name or a configuration array:
namespace app\models;

use yii\db\ActiveRecord;
use app\components\MyBehavior;

class User extends ActiveRecord

{
public function behaviors()
{
return [
// anonymous behavior, behavior class name only
MyBehavior::class,
// named behavior, behavior class name only
'myBehavior2' => MyBehavior::class,
// anonymous behavior, configuration array
L
'class' => MyBehavior::class,
'propl' => 'valuel',
'prop2' => 'value2',
1,
// named behavior, configuration array
'myBehaviord' => [
'class' => MyBehavior::class,
'propl' => 'valuel',
'prop2' => 'value2',
]
1;
}
}

You may associate a name with a behavior by specifying the array key cor-
responding to the behavior configuration. In this case, the behavior is called
a named behavior. In the above example, there are two named behaviors:
myBehavior2 and myBehavior4. If a behavior is not associated with a name, it
is called an anonymous behavior.

To attach a behavior dynamically, call the yii\base\Component: :attachBehavior ()
method of the component to which the behavior is being attached:

use app\components\MyBehavior;

// attach a behavior object
$component->attachBehavior ('myBehaviorl', new MyBehavior());

// attach a behavior class
$component->attachBehavior ('myBehavior2', MyBehavior::class);

5.4. BEHAVIORS 221

// attach a configuration array
$component->attachBehavior ('myBehavior3', [
'class' => MyBehavior::class,
'propl' => 'valuel',
'prop2' => 'value2',

D;

You may attach multiple behaviors at once using the yii\base\Component
::attachBehaviors () method:

$component->attachBehaviors ([
'myBehaviorl' => new MyBehavior(), // a named behavior
MyBehavior::class, // an anonymous behavior

D;

You may also attach behaviors through configurations like the following:

C
'as myBehavior2' => MyBehavior::class,
'as myBehavior3' => [
'class' => MyBehavior::class,
'propl' => 'valuel',
'prop2' => 'value2',
1,
1

For more details, please refer to the Configurations section.

5.4.4 Using Behaviors

To use a behavior, first attach it to a component per the instructions above.

Once a behavior is attached to a component, its usage is straightforward.
You can access a public member variable or a property defined by a getter

and/or a setter of the behavior through the component it is attached to:

// "propl" is a property defined in the behavior class
echo $component->propl;
$component->propl = $value;

You can also call a public method of the behavior similarly:

// foo() is a public method defined in the behavior class
$component->foo();

As you can see, although $component does not define prop1 and foo (), they can
be used as if they are part of the component definition due to the attached
behavior.

If two behaviors define the same property or method and they are both
attached to the same component, the behavior that is attached to the com-
ponent first will take precedence when the property or method is accessed.

222 CHAPTER 5. KEY CONCEPTS

A behavior may be associated with a name when it is attached to a
component. If this is the case, you may access the behavior object using the
name:

$behavior = $component->getBehavior ('myBehavior');

You may also get all behaviors attached to a component:

$behaviors = $component->getBehaviors();

5.4.5 Detaching Behaviors

To detach a behavior, call yii\base\Component: :detachBehavior() with
the name associated with the behavior:

$component->detachBehavior ('myBehaviorl');

You may also detach all behaviors:

$component->detachBehaviors() ;

5.4.6 Using

To wrap up, let’s take a look at yii\behaviors\TimestampBehavior. This
behavior supports automatically updating the timestamp attributes of an
Active Record model anytime the model is saved via insert(), update() or
save() method.

First, attach this behavior to the Active Record class that you plan to
use:

namespace app\models\User;

use yii\db\ActiveRecord;
use yii\behaviors\TimestampBehavior;

class User extends ActiveRecord
{
/.

public function behaviors()
{
return [
[
'class' => TimestampBehavior::class,
'attributes' => [
ActiveRecord: :EVENT_BEFORE_INSERT => ['created_at',
'updated_at'],
ActiveRecord: :EVENT_BEFORE_UPDATE => ['updated_at'],
1,
// if you're using datetime instead of UNIX timestamp:

5.4. BEHAVIORS 223

// 'value' => new Ezpresston('NOW()'),
])
1;

}

The behavior configuration above specifies that when the record is being:
e inserted, the behavior should assign the current UNIX timestamp to
the created_at and updated_at attributes
e updated, the behavior should assign the current UNIX timestamp to
the updated_at attribute

Note: For the above implementation to work with MySQL data-
base, please declare the columns(created_at, updated_at) as int(11)
for being UNIX timestamp.

With that code in place, if you have a User object and try to save it, you will
find its created_at and updated_at are automatically filled with the current
UNIX timestamp:

$user = new User;

$user->email = 'test@example.com';

$user->save();

echo $user->created_at; // shows the current timestamp

The TimestampBehavior also offers a useful method touch(), which will
assign the current timestamp to a specified attribute and save it to the
database:

$user->touch('login_time');

5.4.7 Other behaviors

There are several built-in and external behaviors available:

e yii\behaviors\BlameableBehavior - automatically fills the specified
attributes with the current user ID.

e yii\behaviors\SluggableBehavior - automatically fills the specified
attribute with a value that can be used as a slug in a URL.

e yii\behaviors\AttributeBehavior - automatically assigns a specified
value to one or multiple attributes of an ActiveRecord object when cer-
tain events happen.

e yii2tech'ar\softdelete\ SoftDeleteBehavior? - provides methods to soft-
delete and soft-restore ActiveRecord i.e. set flag or status which marks
record as deleted.

e yii2tech\ar\position' PositionBehavior? - allows managing records or-
der in an integer field by providing reordering methods.

3https://github.com/yii2tech/ar-softdelete
“https://github.com/yii2tech/ar-position

https://github.com/yii2tech/ar-softdelete
https://github.com/yii2tech/ar-position

224 CHAPTER 5. KEY CONCEPTS

5.4.8 Comparing Behaviors with Traits

While behaviors are similar to traits® in that they both “inject” their prop-
erties and methods to the primary class, they differ in many aspects. As
explained below, they both have pros and cons. They are more like comple-
ments to each other rather than alternatives.

Reasons to Use Behaviors

Behavior classes, like normal classes, support inheritance. Traits, on the
other hand, can be considered as language-supported copy and paste. They
do not support inheritance.

Behaviors can be attached and detached to a component dynamically
without requiring modification of the component class. To use a trait, you
must modify the code of the class using it.

Behaviors are configurable while traits are not.

Behaviors can customize the code execution of a component by respond-
ing to its events.

When there can be name conflicts among different behaviors attached to
the same component, the conflicts are automatically resolved by prioritizing
the behavior attached to the component first. Name conflicts caused by dif-
ferent traits requires manual resolution by renaming the affected properties
or methods.

Reasons to Use Traits

Traits are much more efficient than behaviors as behaviors are objects that
take both time and memory.
IDEs are more friendly to traits as they are a native language construct.

5.5 Configurations

Configurations are widely used in Yii when creating new objects or initial-
izing existing objects. Configurations usually include the class name of the
object being created, and a list of initial values that should be assigned to
the object’s properties. Configurations may also include a list of handlers
that should be attached to the object’s events and/or a list of behaviors that
should also be attached to the object.

In the following, a configuration is used to create and initialize a database
connection:

$config = [
'class' => 'yii\db\Connection',
'dsn' => 'mysql:host=127.0.0.1;dbname=demo’,

Shttps://www.php.net/traits

https://www.php.net/traits

5.5. CONFIGURATIONS 225

'username' => 'root',
'password' => '',
'charset' => 'utfs8',

1;
$db = Yii::createObject($config);

The Yii::createObject () method takes a configuration array as its argu-
ment, and creates an object by instantiating the class named in the config-
uration. When the object is instantiated, the rest of the configuration will
be used to initialize the object’s properties, event handlers, and behaviors.

If you already have an object, you may use Yii::configure() to initial-
ize the object’s properties with a configuration array:

Yii::configure($object, $config);

Note that, in this case, the configuration array should not contain a class
element.

5.5.1 Configuration Format
The format of a configuration can be formally described as:

[
'class' => 'ClassName',
'propertyName' => 'propertyValue',
'on eventName' => $eventHandler,
'as behaviorName' => $behaviorConfig,

]

where

e The class element specifies a fully qualified class name for the object
being created.

e The propertyName elements specify the initial values for the named prop-
erty. The keys are the property names, and the values are the corres-
ponding initial values. Only public member variables and properties
defined by getters/setters can be configured.

e The on eventName elements specify what handlers should be attached to
the object’s events. Notice that the array keys are formed by prefixing
event names with on. Please refer to the Events section for supported
event handler formats.

e The as behaviorName elements specify what behaviors should be at-
tached to the object. Notice that the array keys are formed by prefixing
behavior names with as; the value, $behaviorConfig, represents the con-
figuration for creating a behavior, like a normal configuration described
here.

Below is an example showing a configuration with initial property values,
event handlers, and behaviors:

226 CHAPTER 5. KEY CONCEPTS

[
'class' => 'app\components\SearchEngine',
'apiKey' => 'xxxxxxxx',
'on search' => function ($event) {
Yii::info("Keyword searched: " . $event->keyword);
},
'as indexer' => [
'class' => 'app\components\IndexerBehavior',
// ... property init values ...
1,
]

5.5.2 Using Configurations

Configurations are used in many places in Yii. At the beginning of this
section, we have shown how to create an object according to a configura-
tion by using Yii::createObject(). In this subsection, we will describe
application configurations and widget configurations - two major usages of
configurations.

Application Configurations

The configuration for an application is probably one of the most complex
arrays in Yii. This is because the application class has a lot of configur-
able properties and events. More importantly, its components property can
receive an array of configurations for creating components that are registered
through the application. The following is an abstract from the application
configuration file for the Basic Project Template.

$config = [
'id' => 'basic',
'basePath' => dirname(__DIR__),
'extensions' => require __DIR__ . '/../vendor/yiisoft/extensions.php',
'components' => [
'cache' => [
'class' => 'yiilcaching\FileCache',

]!
'mailer' => [
'class' => 'yii\swiftmailer\Mailer',

1,
'log' => [
'class' => 'yiillog\Dispatcher',
'tracelLevel' => YII_DEBUG 7 3 : O,
'targets' => [
[
'class' => 'yiillog\FileTarget',
1,
1,
1,
'db' => [

'class' => 'yii\db\Connection',

5.5. CONFIGURATIONS 227

'dsn' => 'mysql:host=localhost;dbname=stay2’,
'username' => 'root',

'password' => '',

'charset' => 'utf8',

],
1;

The configuration does not have a class key. This is because it is used as
follows in an entry script, where the class name is already given,

(new yii\web\Application($config))->run();

More details about configuring the components property of an application can
be found in the Applications section and the Service Locator section.

Since version 2.0.11, the application configuration supports Dependency
Injection Container configuration using container property. For example:

$config = [
'id' => 'basic’',
'basePath' => dirname(__DIR__),
'extensions' => require __DIR__ . '/../vendor/yiisoft/extensions.php',
'container' => [
'definitions' => [
'yii\widgets\LinkPager' => ['maxButtonCount' => 5]
1,
'singletons' => [
// Dependency Injection Container singletons configuration

]
1;

To know more about the possible values of definitions and singletons config-
uration arrays and real-life examples, please read Advanced Practical Usage
subsection of the Dependency Injection Container article.

Widget Configurations

When using widgets, you often need to use configurations to customize the
widget properties. Both of the yii\base\Widget: :widget () and yii\base
\Widget: :begin() methods can be used to create a widget. They take a
configuration array, like the following,

use yii\widgets\Menu;

echo Menu: :widget ([
'activateltems' => false,
'items' => [
['label' => 'Home', 'url' => ['site/index']],
['label' => 'Products', 'url' => ['product/index']],

228 CHAPTER 5. KEY CONCEPTS

['label' => 'Login', 'url' => ['site/login'], 'visible' =>
Yii::$app->user->isGuest],
1,
IDR

The above code creates a Menu widget and initializes its activateItems property
to be false. The items property is also configured with menu items to be
displayed.

Note that because the class name is already given, the configuration array
should NOT have the class key.

5.5.3 Configuration Files

When a configuration is very complex, a common practice is to store it in
one or multiple PHP files, known as configuration files. A configuration file
returns a PHP array representing the configuration. For example, you may
keep an application configuration in a file named web.php, like the following,

return [
'id' => 'basic',
'basePath' => dirname(__DIR__),
'extensions' => require __DIR__ . '/../vendor/yiisoft/extensions.php',
'components' => require __DIR__ . '/components.php',

1;

Because the components configuration is complex too, you store it in a separate
file called components.php and “require” this file in web.php as shown above. The
content of components.php is as follows,

return [
'cache' => [
'class' => 'yii\caching\FileCache',
1,
'mailer' => [
'class' => 'yii\swiftmailer\Mailer',

1,
'log' => [
'class' => 'yiillog\Dispatcher',
'tracelLevel' => YII_DEBUG 7 3 : O,
'targets' => [
[
'class' => 'yiillog\FileTarget',
1,
1,
1,
'db' => [

'class' => 'yii\db\Connection',

'dsn' => 'mysql:host=localhost;dbname=stay2',
'username' => 'root',

'password' => '',

'charset' => 'utf8',

5.5. CONFIGURATIONS 229

])
1;

To get a configuration stored in a configuration file, simply “require” it, like
the following:

$config = require 'path/to/web.php';
(new yii\web\Application($config))->run();

5.5.4 Default Configurations

The Yii::createObject() method is implemented based on a dependency
injection container. It allows you to specify a set of the so-called default
configurations which will be applied to ALL instances of the specified classes
when they are being created using Yii: :createObject(). The default con-
figurations can be specified by calling Yii::$container->set() in the boot-
strapping code.

For example, if you want to customize yii\widgets\LinkPager so that
ALL link pagers will show at most 5 page buttons (the default value is 10),
you may use the following code to achieve this goal:

\Yii::$container->set('yii\widgets\LinkPager', [
'maxButtonCount' => 5,

D;

Without using default configurations, you would have to configure maxButtonCount
in every place where you use link pagers.

5.5.5 Environment Constants

Configurations often vary according to the environment in which an applic-
ation runs. For example, in development environment, you may want to use
a database named mydb_dev, while on production server you may want to use
the mydb_prod database. To facilitate switching environments, Yii provides
a constant named YII_ENV that you may define in the entry script of your
application. For example,

defined('YII_ENV') or define('YII_ENV', 'dev');

You may define YII_ENV as one of the following values:
e prod: production environment. The constant YII_ENV_PROD will evaluate
as true. This is the default value of YII_gnv if you do not define it.
e dev: development environment. The constant YII_ENV_DEV will evaluate
as true.
e test: testing environment. The constant YII_Env_TEST will evaluate as

true.

230 CHAPTER 5. KEY CONCEPTS

With these environment constants, you may specify your configurations con-
ditionally based on the current environment. For example, your application
configuration may contain the following code to enable the debug toolbar
and debugger in development environment.

$config = [...];

if (YII_ENV_DEV) {
// configuration adjustments for 'dev' environment
$config['bootstrap'][] = 'debug';
$config['modules'] ['debug'] = 'yiildebug\Module';
}

return $config;

5.6 Aliases

Aliases are used to represent file paths or URLs so that you don’t have to
hard-code absolute paths or URLs in your project. An alias must start with
the e character to be differentiated from normal file paths and URLs. Alias
defined without leading e will be prefixed with e character.

Yii has many pre-defined aliases already available. For example, the alias
eyii represents the installation path of the Yii framework; eweb represents
the base URL for the currently running Web application.

5.6.1 Defining Aliases

You can define an alias for a file path or URL by calling Yii::setAlias():

// an alias of a file path
Yii::setAlias('@foo', '/path/to/foo');

// an alias of a URL
Yii::setAlias('@bar', 'http://www.example.com');

// an alias of a concrete file that contains a \|fool\Bar class
Yii::setAlias('@foo/Bar.php', '/definitely/not/foo/Bar.php');

Note: The file path or URL being aliased may not necessarily
refer to an existing file or resource.

Given a defined alias, you may derive a new alias (without the need of calling
Yii::setAlias()) by appending a slash / followed with one or more path
segments. The aliases defined via Yii::setAlias() becomes the root alias,
while aliases derived from it are derived aliases. For example, efoo is a root
alias, while efoo/bar/file.php is a derived alias.

You can define an alias using another alias (either root or derived):

5.6. ALIASES 231
Yii::setAlias('@foobar', '@foo/bar');

Root aliases are usually defined during the bootstrapping stage. For ex-
ample, you may call Yii::setAlias() in the entry script. For convenience,
Application provides a writable property named aliases that you can con-
figure in the application configuration:

return [
/.
'aliases' => [
'@foo' => '/path/to/foo',
'@bar' => 'http://www.example.com',
]:
1;

5.6.2 Resolving Aliases

You can call Yii::getAlias() to resolve a root alias into the file path or
URL it represents. The same method can also resolve a derived alias into
the corresponding file path or URL:

echo Yii::getAlias('@foo'); // displays: /path/to/foo
echo Yii::getAlias('@bar'); // displays:

http://www. ezample. com

echo Yii::getAlias('@foo/bar/file.php'); // displays:
/path/to/foo/bar/file.php

The path/URL represented by a derived alias is determined by replacing the
root alias part with its corresponding path/URL in the derived alias.

Note: The Yii::getAlias() method does not check whether
the resulting path/URL refers to an existing file or resource.

A root alias may also contain slash / characters. The Yii::getAlias()
method is intelligent enough to tell which part of an alias is a root alias and
thus correctly determines the corresponding file path or URL:

Yii::setAlias('@foo', '/path/to/foo');

Yii::setAlias('@foo/bar', '/path2/bar');
Yii::getAlias('@foo/test/file.php'); // displays:
/path/to/foo/test/file.php

Yii::getAlias('@foo/bar/file.php'); // displays: /path2/bar/file.php

If efoo/bar is not defined as a root alias, the last statement would display
/path/to/foo/bar/file.php.

232 CHAPTER 5. KEY CONCEPTS

5.6.3 Using Aliases

Aliases are recognized in many places in Yii without needing to call Yii::
getAlias () to convert them into paths or URLs. For example, yii\caching
\FileCache: :$cachePath can accept both a file path and an alias repres-
enting a file path, thanks to the e prefix which allows it to differentiate a file
path from an alias.

use yii\caching\FileCache;

$cache = new FileCache([
'cachePath' => '@runtime/cache',

D;

Please pay attention to the API documentation to see if a property or method
parameter supports aliases.

5.6.4 Predefined Aliases

Yii predefines a set of aliases to easily reference commonly used file paths
and URLs:

e oyii, the directory where the BaseYii.php file is located (also called the
framework directory).

e @app, the base path of the currently running application.

e Qruntime, the runtime path of the currently running application. De-
faults to eapp/runtime.

e awebroot, the Web root directory of the currently running Web applic-
ation. It is determined based on the directory containing the entry
script.

e aweb, the base URL of the currently running Web application. It has
the same value as yii\web\Request: :$baseUrl.

e @vendor, the Composer vendor directory. Defaults to eapp/vendor.

e obower, the root directory that contains bower packages®. Defaults to
Q@vendor/bower.

e onpm, the root directory that contains npm packages’. Defaults to
@vendor/npm.

The eyii alias is defined when you include the vii.php file in your entry
script. The rest of the aliases are defined in the application constructor
when applying the application configuration.

Note: eweb and ewebroot aliases as their descriptions indicate are
defined within Web application and therefore are not available
for Console application by default.

Shttps://bower.io/
"https://www.npmjs.com/

https://bower.io/
https://www.npmjs.com/

5.7. CLASS AUTOLOADING 233

5.6.5 Extension Aliases

An alias is automatically defined for each extension that is installed via
Composer. Each alias is named after the root namespace of the extension as
declared in its composer. json file, and each alias represents the root directory
of the package. For example, if you install the yiisoft/yii2-jui extension, you
will automatically have the alias eyii/jui defined during the bootstrapping
stage, equivalent to:

Yii::setAlias('@yii/jui', 'VendorPath/yiisoft/yii2-jui');

5.7 Class Autoloading

Yii relies on the class autoloading mechanism® to locate and include all
required class files. It provides a high-performance class autoloader that is
compliant with the PSR-4 standard®. The autoloader is installed when you
include the Yii.php file.

Note: For simplicity of description, in this section we will only
talk about autoloading of classes. However, keep in mind that the
content we are describing here applies to autoloading of interfaces
and traits as well.

5.7.1 Using the Yii Autoloader

To make use of the Yii class autoloader, you should follow two simple rules
when creating and naming your classes:
e Each class must be under a namespace!'® (e.g. foo\bar\MyClass)
e Each class must be saved in an individual file whose path is determined
by the following algorithm:

// $classlName s a fully qualified class name without the leading backslash
$classFile = Yii::getAlias('@' . str_replace('\\', '/', $className) .

' '

.php");

For example, if a class name and namespace is foo\bar\MyClass, the alias for
the corresponding class file path would be efoo/bar/MyClass.php. In order for
this alias to be resolvable into a file path, either efoo or efoo/bar must be a
root alias.

When using the Basic Project Template, you may put your classes under
the top-level namespace app so that they can be autoloaded by Yii without

8https://www.php.net/manual/en/language.oop5.autoload.php

‘https://github.com/php-fig/fig-standards/blob/master/accepted/
PSR-4-autoloader.md

Ohttps://www.php.net/manual/en/language .namespaces.php

https://www.php.net/manual/en/language.oop5.autoload.php
https://github.com/php-fig/fig-standards/blob/master/accepted/PSR-4-autoloader.md
https://github.com/php-fig/fig-standards/blob/master/accepted/PSR-4-autoloader.md
https://www.php.net/manual/en/language.namespaces.php

234 CHAPTER 5. KEY CONCEPTS

the need of defining a new alias. This is because eapp is a predefined alias,
and a class name like app\components\MyClass can be resolved into the class
file AppBasePath/components/MyClass. php, according to the algorﬂﬁun,just de-
scribed.

In the Advanced Project Template!!, each tier has its own root alias. For
example, the front-end tier has a root alias efrontend, while the back-end tier
root alias is @backend. As a result, you may put the front-end classes under
the namespace frontend while the back-end classes are under backend. This
will allow these classes to be autoloaded by the Yii autoloader.

To add a custom namespace to the autoloader you need to define an
alias for the base directory of the namespace using Yii: :setAlias(). For ex-
ample to load classes in the foo namespace that are located in the path/to/foo
directory you will call Yii::setAlias('@foo', 'path/to/foo').

5.7.2 Class Map

The Yii class autoloader supports the class map feature, which maps class
names to the corresponding class file paths. When the autoloader is loading a
class, it will first check if the class is found in the map. If so, the correspond-
ing file path will be included directly without further checks. This makes
class autoloading super fast. In fact, all core Yii classes are autoloaded this
way.

You may add a class to the class map, stored in Yii::$classMap, using:

Yii::$classMap['foo\bar\MyClass'] = 'path/to/MyClass.php';

Aliases can be used to specify class file paths. You should set the class map
in the bootstrapping process so that the map is ready before your classes are
used.

5.7.3 Using Other Autoloaders

Because Yii embraces Composer as a package dependency manager, it is
recommended that you also install the Composer autoloader. If you are
using 3rd-party libraries that have their own autoloaders, you should also
install those.

When using the Yii autoloader together with other autoloaders, you
should include the Yii.php file after all other autoloaders are installed. This
will make the Yii autoloader the first one responding to any class autoloading
request. For example, the following code is extracted from the entry script of
the Basic Project Template. The first line installs the Composer autoloader,
while the second line installs the Yii autoloader:

"https://github.com/yiisoft/yii2-app-advanced/blob/master/docs/guide/
README . md

https://github.com/yiisoft/yii2-app-advanced/blob/master/docs/guide/README.md
https://github.com/yiisoft/yii2-app-advanced/blob/master/docs/guide/README.md

5.8. SERVICE LOCATOR 235

require __DIR__ . '/../vendor/autoload.php';
require __DIR__ . '/../vendor/yiisoft/yii2/Yii.php';

You may use the Composer autoloader alone without the Yii autoloader.
However, by doing so, the performance of your class autoloading may be
degraded, and you must follow the rules set by Composer in order for your
classes to be autoloadable.

Info: If you do not want to use the Yii autoloader, you must
create your own version of the vii.php file and include it in your
entry script.

5.7.4 Autoloading Extension Classes

The Yii autoloader is capable of autoloading extension classes. The sole
requirement is that an extension specifies the autoload section correctly in its
composer. json file. Please refer to the Composer documentation'? for more
details about specifying autoload.

In case you do not use the Yii autoloader, the Composer autoloader can
still autoload extension classes for you.

5.8 Service Locator

A service locator is an object that knows how to provide all sorts of services
(or components) that an application might need. Within a service locator,
each component exists as only a single instance, uniquely identified by an
ID. You use the ID to retrieve a component from the service locator.

In Yii, a service locator is simply an instance of yii\di\ServiceLocator
or a child class.

The most commonly used service locator in Yii is the application ob-
ject, which can be accessed through \vii::$app. The services it provides are
called application components, such as the request, response, and urlManager
components. You may configure these components, or even replace them
with your own implementations, easily through functionality provided by
the service locator.

Besides the application object, each module object is also a service loc-
ator. Modules implement tree traversal.

To use a service locator, the first step is to register components with it.
A component can be registered via yii\di\ServiceLocator::set(). The
following code shows different ways of registering components:

use yiildi\ServiceLocator;
use yiilcaching\FileCache;

2https://getcomposer.org/doc/04-schema.md#autoload

https://getcomposer.org/doc/04-schema.md#autoload

236 CHAPTER 5. KEY CONCEPTS

$locator = new Servicelocator;

// register "cache" using a class name that can be used to create a
component
$locator->set('cache', 'yii\caching\ApcCache');

// register "db" using a configuration array that can be used to create a
component
$locator->set('db', [

'class' => 'yii\db\Connection',

'dsn' => 'mysql:host=localhost;dbname=demo’,

'username' => 'root',

'password' => '',

D;

// register "search" using an anonymous function that builds a component
$locator->set('search', function () {
return new app\components\SolrService;

b;

// register "pageCache" using a component
$locator->set ('pageCache', new FileCache);

Once a component has been registered, you can access it using its ID, in one
of the two following ways:

$cache = $locator->get('cache');
// or alternatively
$cache = $locator->cache;

As shown above, yii\di\ServiceLocator allows you to access a component
like a property using the component ID. When you access a component for
the first time, yii\di\ServiceLocator will use the component registration
information to create a new instance of the component and return it. Later,
if the component is accessed again, the service locator will return the same
instance.

You may use yii\di\ServiceLocator: :has() to check if a component
ID has already been registered. If you call yii\di\ServiceLocator: :get()
with an invalid ID, an exception will be thrown.

Because service locators are often being created with configurations, a
writable property named components is provided. This allows you to con-
figure and register multiple components at once. The following code shows
a configuration array that can be used to configure a service locator (e.g. an
application) with the db, cache, tz and search components:

return [
// .
'components' => [
'db' => [

5.8. SERVICE LOCATOR 237

'class' => 'yiildb\Connection',
'dsn' => 'mysql:host=localhost;dbname=demo’,
'username' => 'root',
'password' => '',

1,

'cache' => 'yiilcaching\ApcCache',

'tz' => function() {
return new \DateTimeZone(Yii::$app->formatter->defaultTimeZone);

},

'search' => function () {
$solr = new app\components\SolrService('127.0.0.1');
// ... other initializations ...
return $solr;

},

1,
1;

In the above, there is an alternative way to configure the search compon-
ent. Instead of directly writing a PHP callback which builds a SolrService
instance, you can use a static class method to return such a callback, like
shown as below:

class SolrServiceBuilder

{
public static function build($ip)
{
return function () use ($ip) {
$solr = new app\components\SolrService($ip);
// ... other initializations ...
return $solr;
};
}
}
return [
/7.
'components' => [
/7
'search' => SolrServiceBuilder::build('127.0.0.1"),
1,
1;

This alternative approach is most preferable when you are releasing a Yii
component which encapsulates some non-Yii 3rd-party library. You use the
static method like shown above to represent the complex logic of building
the 3rd-party object, and the user of your component only needs to call the
static method to configure the component.

5.8.1 Tree traversal

Modules allow arbitrary nesting; a Yii application is essentially a tree of
modules. Since each of these modules is a service locator it makes sense

238 CHAPTER 5. KEY CONCEPTS

for children to have access to their parent. This allows modules to use
$this->get ('db') instead of referencing the root service locator Yii: :$app->get('db").
Added benefit is the option for a developer to override configuration in a
module.

Any request for a service to be retrieved from a module will be passed
on to its parent in case the module is not able to satisfy it.

Note that configuration from components in a module is never merged
with configuration from a component in a parent module. The Service Loc-
ator pattern allows us to define named services but one cannot assume ser-
vices with the same name use the same configuration parameters.

5.9 Dependency Injection Container

A dependency injection (DI) container is an object that knows how to instan-
tiate and configure objects and all their dependent objects. Martin Fowler’s
article' has well explained why DI container is useful. Here we will mainly
explain the usage of the DI container provided by Yii.

5.9.1 Dependency Injection

Yii provides the DI container feature through the class yii\di\Container.
It supports the following kinds of dependency injection:

e Constructor injection;

e Method injection;

e Setter and property injection;

e PHP callable injection;

Constructor Injection

The DI container supports constructor injection with the help of type hints
for constructor parameters. The type hints tell the container which classes
or interfaces are dependent when it is used to create a new object. The
container will try to get the instances of the dependent classes or interfaces
and then inject them into the new object through the constructor. For
example,

class Foo

{
public function __construct(Bar $bar)
{
}

}

$foo = $container->get('Foo');

Bhttps://martinfowler.com/articles/injection.html

https://martinfowler.com/articles/injection.html

5.9. DEPENDENCY INJECTION CONTAINER 239

// which is equivalent to the following:
$bar = new Bar;
$foo = new Foo($bar);

Method Injection

Usually the dependencies of a class are passed to the constructor and are
available inside of the class during the whole lifecycle. With Method Injection
it is possible to provide a dependency that is only needed by a single method
of the class and passing it to the constructor may not be possible or may
cause too much overhead in the majority of use cases.

A class method can be defined like the doSomething() method in the fol-
lowing example:

class MyClass extends \yii\base\Component

{
public function __construct(/*Some lightweight dependencies herex/,
$config = [1)
{
/.
}
public function doSomething($paraml, \my\heavy\Dependency $something)
{
// do something with $something
}
}

You may call that method either by passing an instance of \my\heavy\Dependency
yourself or using yii\di\Container: :invoke() like the following:

$obj = new MyClass(/*...*/);
Yii::$container->invoke ([$obj, 'doSomething']l, ['paraml' => 42]1); //
$something will be provided by the DI container

Setter and Property Injection

Setter and property injection is supported through configurations. When
registering a dependency or when creating a new object, you can provide a
configuration which will be used by the container to inject the dependencies
through the corresponding setters or properties. For example,

use yii\base\BaseObject;
class Foo extends BaseObject
{

public $bar;

private $_qux;

240 CHAPTER 5. KEY CONCEPTS

public function getQux()

{
return $this->_qux;
}
public function setQux(Qux $qux)
{
$this->_qux = $qux;
}

}

$container->get ('Foo', [1, [
'bar' => $container->get('Bar'),
'qux' => $container->get('Qux'),

D;

Info: The yii\di\Container::get() method takes its third
parameter as a configuration array that should be applied to
the object being created. If the class implements the yii\base
\Configurable interface (e.g. yii\base\BaseObject), the con-
figuration array will be passed as the last parameter to the class
constructor; otherwise, the configuration will be applied after the
object is created.

PHP Callable Injection

In this case, the container will use a registered PHP callable to build new
instances of a class. Each time when yii\di\Container::get() is called,
the corresponding callable will be invoked. The callable is responsible to
resolve the dependencies and inject them appropriately to the newly created
objects. For example,

$container->set ('Foo', function ($container, $params, $config) {
$foo = new Foo(new Bar);
// ... other initializations ...
return $foo;

b;

$foo = $container->get('Foo');

To hide the complex logic for building a new object, you may use a static
class method as callable. For example,

class FooBuilder
{
public static function build($container, $params, $config)
{
$foo = new Foo(new Bar);
// ... other initializations ...
return $foo;

5.9. DEPENDENCY INJECTION CONTAINER 241

}
$container->set('Foo', ['app\helper\FooBuilder', 'build'l);

$foo = $container->get('Foo');

By doing so, the person who wants to configure the Foo class no longer needs
to be aware of how it is built.

5.9.2 Registering Dependencies

You can use yiildi\Container::set() to register dependencies. The re-
gistration requires a dependency name as well as a dependency definition. A
dependency name can be a class name, an interface name, or an alias name;
and a dependency definition can be a class name, a configuration array, or a
PHP callable.

$container = new \yiildi\Container;

// register a class name as is. This can be skipped.
$container->set ('yii\db\Connection') ;

// register an interface

// When a class depends on the interface, the corresponding class
// will be instantiated as the dependent object
$container->set('yii\mail\MailInterface', 'yii\swiftmailer\Mailer');

// register an alias name. You can use $container->get('foo')
// to create an instance of Connection
$container->set('foo', 'yii\db\Connection');

// register an alias with “Instance::of"
$container->set('bar', Instance::of('foo'));

// register a class with configuration. The configuration
// will be applied when the class is instantiated by get()
$container->set ('yii\db\Connection', [

'dsn' => 'mysql:host=127.0.0.1;dbname=demo’,

'username' => 'root',

'password' => '',

'charset' => 'utf8',

D;

// register an alias name with class configuration
// In this case, a "class" or "
class
$container->set('db', [
'class' => 'yii\db\Connection',
'dsn' => 'mysql:host=127.0.0.1;dbname=demo’,
'username' => 'root',

__class" element is required to specify the

'password' => '',

242 CHAPTER 5. KEY CONCEPTS

'charset' => 'utf8',

D;

// register callable closure or array
// The callable will be ezecuted each time when $container->get('db') s
called
$container->set('db', function ($container, $params, $config) {
return new \yii\db\Connection($config);
I9H
$container->set('db', ['app\db\DbFactory', 'create'l);

// register a component instance

// $container->get('pageCache’) will return the same instance each time <t
15 called

$container->set ('pageCache', new FileCache);

Tip: If a dependency name is the same as the corresponding
dependency definition, you do not need to register it with the DI
container.

A dependency registered via set() will generate an instance each time the
dependency is needed. You can use yiildi\Container::setSingleton()
to register a dependency that only generates a single instance:

$container->setSingleton('yii\db\Connection', [
'dsn' => 'mysql:host=127.0.0.1;dbname=demo’,
'username' => 'root',
'password' => '',
'charset' => 'utf8',

D;

5.9.3 Resolving Dependencies

Once you have registered dependencies, you can use the DI container to
create new objects, and the container will automatically resolve dependencies
by instantiating them and injecting them into the newly created objects. The
dependency resolution is recursive, meaning that if a dependency has other
dependencies, those dependencies will also be resolved automatically.

You can use get() to either create or get object instance. The method
takes a dependency name, which can be a class name, an interface name
or an alias name. The dependency name may be registered via set() or
setSingleton(). You may optionally provide a list of class constructor
parameters and a configuration to configure the newly created object.

For example:

// "db" is a previously registered alias name
$db = $container->get('db');

// equivalent to: $engine = new \app\components\SearchEngine($apikey,
$apiSecret, ['type' => 1]);

5.9. DEPENDENCY INJECTION CONTAINER 243

$engine = $container->get ('app\components\SearchEngine', [$apiKey,
$apiSecret], ['type' => 11);

// equivalent to: $apt = new \app\components\Api($host, $apiKey);
$api = $container->get ('app\components\Api', ['host' => $host, 'apiKey' =>
$apiKeyl);

Behind the scene, the DI container does much more work than just creating
a new object. The container will first inspect the class constructor to find
out dependent class or interface names and then automatically resolve those
dependencies recursively.

The following code shows a more sophisticated example. The UserLister
class depends on an object implementing the UserFinderInterface interface;
the UserFinder class implements this interface and depends on a Connection
object. All these dependencies are declared through type hinting of the
class constructor parameters. With proper dependency registration, the DI
container is able to resolve these dependencies automatically and creates a
new UserLister instance with a simple call of get('userLister').

namespace app\models;

use yii\base\BaseObject;
use yii\db\Connection;
use yii\di\Container;

interface UserFinderInterface
{
function findUser();

}

class UserFinder extends BaseObject implements UserFinderInterface

{
public $db;

public function __construct(Connection $db, $config = [])

{
$this->db = $db;
parent::__construct($config);
}
public function findUser()
{
}

class UserLister extends BaseObject
{
public $finder;

public function

{

_construct (UserFinderInterface $finder, $config = [])

$this->finder = $finder;

244 CHAPTER 5. KEY CONCEPTS

parent::__construct($config) ;

}

$container = new Container;

$container->set ('yii\db\Connection', [
'dsn' => '...',

D;

$container->set ('app\models\UserFinderInterface', [
'class' => 'app\models\UserFinder',

D;

$container->set('userLister', 'app\models\UserLister');
$lister = $container->get('userLister');
// which ts equivalent to:

$db = new \yii\db\Connection(['dsn' => '...']);
$finder = new UserFinder($db);
$lister = new UserLister($finder);

5.9.4 Practical Usage

Yii creates a DI container when you include the Yii.php file in the entry script
of your application. The DI container is accessible via Yii::$container.
When you call Yii::createObject(), the method will actually call the con-
tainer’s get () method to create a new object. As aforementioned, the DI
container will automatically resolve the dependencies (if any) and inject them
into obtained object. Because Yii uses Yii::createObject() in most of its
core code to create new objects, this means you can customize the objects
globally by dealing with Yii::$container.

For example, let’s customize globally the default number of pagination
buttons of yii\widgets\LinkPager.

\Yii::$container->set('yii\widgets\LinkPager', ['maxButtonCount' => 5]);

Now if you use the widget in a view with the following code, the maxButtonCount
property will be initialized as 5 instead of the default value 10 as defined in
the class.

echo \yii\widgets\LinkPager: :widget();
You can still override the value set via DI container, though:

echo \yii\widgets\LinkPager: :widget (['maxButtonCount' => 20]);

Note: Properties given in the widget call will always override
the definition in the DI container. Even if you specify an array,
e.g. ‘'optioms' => ['id' => 'mypager'] these will not be merged
with other options but replace them.

5.9. DEPENDENCY INJECTION CONTAINER 245

Another example is to take advantage of the automatic constructor injection
of the DI container. Assume your controller class depends on some other
objects, such as a hotel booking service. You can declare the dependency
through a constructor parameter and let the DI container to resolve it for
you.

namespace app\controllers;

use yii\web\Controller;
use app\components\BookingInterface;

class HotelController extends Controller

{
protected $bookingService;
public function __construct($id, $module, BookingInterface
$bookingService, $config = [])
{
$this->bookingService = $bookingService;
parent::__construct($id, $module, $config);
}
}

If you access this controller from browser, you will see an error complaining
the BookingInterface cannot be instantiated. This is because you need to tell
the DI container how to deal with this dependency:

\Yii::$container->set ('app\components\BookingInterface',
"app\components\BookingService') ;

Now if you access the controller again, an instance of app\components\BookingService
will be created and injected as the 3rd parameter to the controller’s con-
structor.

Since Yii 2.0.36 when using PHP 7 action injection is available for both
web and console controllers:

namespace app\controllers;

use yii\web\Controller;
use app\components\BookingInterface;

class HotelController extends Controller
{
public function actionBook($id, BookingInterface $bookingService)
{
$result = $bookingService->book($id) ;
/..

246 CHAPTER 5. KEY CONCEPTS

5.9.5 Advanced Practical Usage

Say we work on API application and have:

® app\components\Request class that extends yii\web\Request and provides
additional functionality

® app\components\Response class that extends yii\web\Response and should
have format property set to json on creation

® app\storage\FileStorage and app\storage\DocumentsReader classes that im-
plement some logic on working with documents that are located in some
file storage:

class FileStorage

{
public function __construct($root) {
// whatever
}
}
class DocumentsReader
{
public function __construct(FileStorage $fs) {
// whatever
}
}

It is possible to configure multiple definitions at once, passing configuration
array to setDefinitions () or setSingletons () method. Iterating over the
configuration array, the methods will call set () or setSingleton() respect-
ively for each item.

The configuration array format is:

e key: class name, interface name or alias name. The key will be passed
to the set () method as a first argument $class.

e value: the definition associated with $class. Possible values are de-
scribed in set() documentation for the $definition parameter. Will
be passed to the set () method as the second argument $definition.

For example, let’s configure our container to follow the aforementioned re-
quirements:

$container->setDefinitions ([
'yii\web\Request' => 'app\components\Request',
'yii\web\Response' => [
'class' => 'app\components\Response',
'format' => 'json'
1,
'app\storage\DocumentsReader' => function ($container, $params, $config)
{
$fs = new app\storage\FileStorage('/var/tempfiles');
return new app\storage\DocumentsReader($fs);

D

5.9. DEPENDENCY INJECTION CONTAINER 247

$reader = $container->get ('app\storage\DocumentsReader') ;
// Will create DocumentReader object with its dependencies as described in
the config

Tip: Container may be configured in declarative style using ap-
plication configuration since version 2.0.11. Check out the Ap-
plication Configurations subsection of the Configurations guide
article.

Everything works, but in case we need to create Documentwriter class, we shall
copy-paste the line that creates FileStorage object, that is not the smartest
way, obviously.

As described in the Resolving Dependencies subsection, set () and setSingleton()
can optionally take dependency’s constructor parameters as a third argu-
ment. To set the constructor parameters, you may use the __construct()
option:

Let’s modify our example:

$container->setDefinitions ([
'tempFileStorage' => [// we've created an alias for convenience
'class' => 'app\storage\FileStorage',
'__construct()' => ['/var/tempfiles'], // could be eztracted from
some config files

],

'app\storage\DocumentsReader' => [
'class' => 'app\storage\DocumentsReader',
'__construct()' => [Instance::of ('tempFileStorage')],

1,
'app\storage\DocumentsWriter' => [
'class' => 'app\storage\DocumentsWriter"',
'__construct()' => [Instance::of ('tempFileStorage')]
]
IDR

$reader = $container->get('app\storage\DocumentsReader');
// Will behave exactly the same as in the previous ezample.

You might notice Instance::of('tempFileStorage') notation. It means, that
the Container will implicitly provide a dependency registered with the name

of tempFileStorage and pass it as the first argument of app\storage\DocumentsWriter
constructor.

Note: setDefinitions() and setSingletons() methods are
available since version 2.0.11.

Another step on configuration optimization is to register some dependencies
as singletons. A dependency registered via set () will be instantiated each
time it is needed. Some classes do not change the state during runtime, there-
fore they may be registered as singletons in order to increase the application
performance.

248 CHAPTER 5. KEY CONCEPTS

A good example could be app\storage\FileStorage class, that executes
some operations on file system with a simple API (e.g. $fs->read(), $fs->write()).
These operations do not change the internal class state, so we can create its
instance once and use it multiple times.

$container->setSingletons ([
'tempFileStorage' => [
'class' => 'app\storage\FileStorage',
'__construct()' => ['/var/tempfiles']
1,
IDR

$container->setDefinitions ([
'app\storage\DocumentsReader' => [
'class' => 'app\storage\DocumentsReader',
'__construct()' => [Instance::of('tempFileStorage')],
1,
'app\storage\DocumentsWriter' => [
'class' => 'app\storage\DocumentsWriter',
'__construct()' => [Instance::of('tempFileStorage')],
]
IDH

$reader = $container->get ('app\storage\DocumentsReader');

5.9.6 When to Register Dependencies

Because dependencies are needed when new objects are being created, their
registration should be done as early as possible. The following are the re-
commended practices:

e If you are the developer of an application, you can register your de-
pendencies using application configuration. Please, read the Applica-
tion Configurations subsection of the Configurations guide article.

e If you are the developer of a redistributable extension, you can register
dependencies in the bootstrapping class of the extension.

5.9.7 Summary

Both dependency injection and service locator are popular design patterns
that allow building software in a loosely-coupled and more testable fash-
ion. We highly recommend you to read Martin’s article!* to get a deeper
understanding of dependency injection and service locator.

Yii implements its service locator on top of the dependency injection
(DI) container. When a service locator is trying to create a new object
instance, it will forward the call to the DI container. The latter will resolve
the dependencies automatically as described above.

Yhttps://martinfowler.com/articles/injection.html

https://martinfowler.com/articles/injection.html

Chapter 6

Working with Databases

6.1 Database Access Objects

Built on top of PDO!, Yii DAO (Database Access Objects) provides an
object-oriented API for accessing relational databases. It is the foundation
for other more advanced database access methods, including query builder
and active record.

When using Yii DAO, you mainly need to deal with plain SQLs and
PHP arrays. As a result, it is the most efficient way to access databases.
However, because SQL syntax may vary for different databases, using Yii
DAO also means you have to take extra effort to create a database-agnostic
application.

In Yii 2.0, DAO supports the following databases out of the box:
MySQL?

MariaDB3

SQLite?

PostgreSQL?: version 8.4 or higher
CUBRIDS: version 9.3 or higher.
Oracle”

MSSQLE: version 2008 or higher.

Note: New version of pdo_oci for PHP 7 currently exists only
as the source code. Follow instruction provided by community?

"https://www.php.net/manual/en/book.pdo.php

2https://www.mysql.com/

3https://mariadb.com/

‘https://sqlite.org/

Shttps://www.postgresql.org/

Shttps://www.cubrid.org/

"https://www.oracle.com/database/
Shttps://www.microsoft.com/en-us/sqlserver/default.aspx
“https://github.com/yiisoft/yii2/issues/10975#issuecomment - 248479268

249

https://www.php.net/manual/en/book.pdo.php
https://www.mysql.com/
https://mariadb.com/
https://sqlite.org/
https://www.postgresql.org/
https://www.cubrid.org/
https://www.oracle.com/database/
https://www.microsoft.com/en-us/sqlserver/default.aspx
https://github.com/yiisoft/yii2/issues/10975#issuecomment-248479268

250 CHAPTER 6. WORKING WITH DATABASES
to compile it or use PDO emulation layer!?.

6.1.1 Creating DB Connections

To access a database, you first need to connect to it by creating an instance
of yii\db\Connection:

$db = new yii\db\Connection([
'dsn' => 'mysql:host=localhost;dbname=example’,
'username' => 'root',
'password' => '',
'charset' => 'utf8',

D;

Because a DB connection often needs to be accessed in different places, a
common practice is to configure it in terms of an application component like
the following:

return [
/7
'components' => [
/..
'db' => [
'class' => 'yii\db\Connection',
'dsn' => 'mysql:host=localhost;dbname=example'’,
'username' => 'root',
'password' => '',
'charset' => 'utf8',
1,
1,
// .
1;

You can then access the DB connection via the expression Yii::$app->db.

Tip: You can configure multiple DB application components if
your application needs to access multiple databases.

When configuring a DB connection, you should always specify its Data
Source Name (DSN) via the dsn property. The format of DSN varies for
different databases. Please refer to the PHP manual'! for more details. Be-
low are some examples:

hﬁyS(QI” MariaDB: mysql:host=localhost;dbname=mydatabase

SQLite: sqlite:/path/to/database/file

I)OstgreS(Q[ﬁ pgsql:host=localhost;port=5432;dbname=mydatabase
(j[”Bf{II):cubrid:dbname=demodb;host=loca1host;port=33000

YOhttps://github. com/taq/pdooci
"https://www.php.net/manual/en/pdo. construct.php

https://github.com/taq/pdooci
https://www.php.net/manual/en/pdo.construct.php

6.1. DATABASE ACCESS OBJECTS 251

MS SCQIAServer(\daaxﬂer(hjver) sqlsrv:Server=localhost;Database=mydatabase
MS S(QI‘Server(via(ﬂohl)drivery dblib:host=localhost;dbname=mydatabase

MS S(QIAServer(ViaInssqldriver) mssql:host=localhost;dbname=mydatabase
Oracle: oci:dbname=//localhost:1521/mydatabase

Note that if you are connecting with a database via ODBC, you should
configure the yii\db\Connection::$driverName property so that Yii can

know the actual database type. For example,

'db' => [
'class' => 'yiildb\Connection',
'driverName' => 'mysql',
'dsn' => 'odbc:Driver={MySQL};Server=localhost;Database=test',
'username' => 'root',
'password' => '',

]?

Besides the dsn property, you often need to configure username and password.
Please refer to yii\db\Connection for the full list of configurable properties.

Info: When you create a DB connection instance, the actual
connection to the database is not established until you execute
the first SQL or you call the open() method explicitly.

Tip: Sometimes you may want to execute some queries right
after the database connection is established to initialize some
environment variables (e.g., to set the timezone or character set).
You can do so by registering an event handler for the afterOpen
event of the database connection. You may register the handler
directly in the application configuration like so:

'db' => [
/...
'on afterOpen' => function($event) {
// $event->sender refers to the DB connection
$event->sender->createCommand ("SET time_zone =
'UTC'") ->execute();

]!

For MS SQL Server additional connection option is needed for proper binary
data handling:

'db' => [
'class' => 'yiildb\Connection',
'dsn' => 'sqglsrv:Server=localhost;Database=mydatabase',
'attributes' => [
\PDO: : SQLSRV_ATTR_ENCODING => \PDO: :SQLSRV_ENCODING_SYSTEM
]
1,

252 CHAPTER 6. WORKING WITH DATABASES

6.1.2 Executing SQL Queries

Once you have a database connection instance, you can execute a SQL query
by taking the following steps:

1. Create a yii\db\Command with a plain SQL query;
2. Bind parameters (optional);

3. Call one of the SQL execution methods in yii\db\Command.

The following example shows various ways of fetching data from a database:

// return a set of rows. each Tow is an associative array of column names
and values.
// an empty array is returned if the query returned mo results
$posts = Yii::$app->db->createCommand('SELECT * FROM post')
->queryAll(Q);

// return a single row (the first row)

// false is returned tf the query has no result

$post = Yii::$app->db->createCommand('SELECT * FROM post WHERE id=1')
->queryOne() ;

// return a single column (the first column)

// an empty array is returned if the query returned nmo results

$titles = Yii::$app->db->createCommand('SELECT title FROM post')
->queryColumn() ;

// return a scalar value

// false is returned if the query has no result

$count = Yii::$app->db->createCommand('SELECT COUNT(*) FROM post')
->queryScalar();

Note: To preserve precision, the data fetched from databases
are all represented as strings, even if the corresponding database
column types are numerical.

Binding Parameters

When creating a DB command from a SQL with parameters, you should
almost always use the approach of binding parameters to prevent SQL in-
jection attacks. For example,

$post = Yii::$app->db->createCommand('SELECT * FROM post WHERE id=:id AND
status=:status')

->bindValue(':id', $_GET['id'])

->bindValue(':status', 1)

->queryOne() ;

6.1. DATABASE ACCESS OBJECTS 253

In the SQL statement, you can embed one or multiple parameter placeholders
(e.g. :id in the above example). A parameter placeholder should be a string
starting with a colon. You may then call one of the following parameter
binding methods to bind the parameter values:

e bindValue(): bind a single parameter value

e bindValues(): bind multiple parameter values in one call

e bindParam(): similar to bindValue() but also support binding para-

meter references.

The following example shows alternative ways of binding parameters:

$params = [':id' => $_GET['id'], ':status' => 1];

$post = Yii::$app->db->createCommand('SELECT * FROM post WHERE id=:id AND
status=:status')

->bindValues ($params)

->queryOne() ;

$post = Yii::$app->db->createCommand('SELECT * FROM post WHERE id=:id AND
status=:status', $params)
->queryOne () ;

Parameter binding is implemented via prepared statements'?. Besides pre-
venting SQL injection attacks, it may also improve performance by preparing
a SQL statement once and executing it multiple times with different para-
meters. For example,

$command = Yii::$app->db->createCommand('SELECT * FROM post WHERE id=:id');

$postl = $command->bindValue(':id', 1)->queryOne();
$post2 = $command->bindValue(':id', 2)->queryOne();
/..

Because bindParam() supports binding parameters by references, the above
code can also be written like the following:

$command = Yii::$app->db->createCommand('SELECT * FROM post WHERE id=:id')
->bindParam(':id', $id);

$id = 1;

$postl = $command->querylne() ;

$id = 2;
$post2 = $command->queryOne();
/7

Notice that you bind the placeholder to the $id variable before the execution,
and then change the value of that variable before each subsequent execution
(this is often done with loops). Executing queries in this manner can be

2https://www.php.net/manual/en/mysqli.quickstart.prepared-statements.php

https://www.php.net/manual/en/mysqli.quickstart.prepared-statements.php

254 CHAPTER 6. WORKING WITH DATABASES

vastly more efficient than running a new query for every different parameter
value.

Info: Parameter binding is only used in places where values need
to be inserted into strings that contain plain SQL. In many places
in higher abstraction layers like query builder and active record
you often specify an array of values which will be transformed into
SQL. In these places parameter binding is done by Yii internally,
so there is no need to specify params manually.

Executing Non-SELECT Queries

The queryXyz() methods introduced in the previous sections all deal with
SELECT queries which fetch data from databases. For queries that do not
bring back data, you should call the yii\db\Command: :execute() method
instead. For example,

Yii::$app->db->createCommand ('UPDATE post SET status=1 WHERE id=1"')
->execute();

The yii\db\Command: :execute () method returns the number of rows af-
fected by the SQL execution.

For INSERT, UPDATE and DELETE queries, instead of writing plain
SQLs, you may call insert (), update (), delete (), respectively, to build the
corresponding SQLs. These methods will properly quote table and column
names and bind parameter values. For example,

// INSERT (table mame, column wvalues)
Yii::$app->db->createCommand()->insert('user', [
'name' => 'Sam',
'age' => 30,
1) ->execute();

// UPDATE (table mame, column values, condition)
Yii::$app->db->createCommand()->update('user', ['status' => 1], 'age >
30')->execute();

// DELETE (table nmame, condition)
Yii::$app->db->createCommand() ->delete('user', 'status = 0')->execute();

You may also call batchInsert () to insert multiple rows in one shot, which
is much more efficient than inserting one row at a time:

// table name, column mames, column values
Yii::$app->db->createCommand() ->batchInsert('user', ['name', 'age'l, [
['Tom', 307,
['Jane', 20],
['Linda', 25],
1) ->execute();

6.1. DATABASE ACCESS OBJECTS 255

Another useful method is upsert(). Upsert is an atomic operation that
inserts rows into a database table if they do not already exist (matching
unique constraints), or update them if they do:

Yii::$app->db->createCommand() ->upsert('pages', [
'name' => 'Front page',
'url' => 'http://example.com/', // url is unique
'visits' => 0,
1, [
'visits' => new \yii\db\Expression('visits + 1'),
1, $params)->execute();

The code above will either insert a new page record or increment its visit
counter atomically.

Note that the aforementioned methods only create the query and you
always have to call execute() to actually run them.

6.1.3 Quoting Table and Column Names

When writing database-agnostic code, properly quoting table and column
names is often a headache because different databases have different name
quoting rules. To overcome this problem, you may use the following quoting
syntax introduced by Yii:
® [[column namel]l: enclose a column name to be quoted in double square
brackets;
e {{table name}}: enclose a table name to be quoted in double curly
brackets.
Yii DAO will automatically convert such constructs into the corresponding
quoted column or table names using the DBMS specific syntax. For example,

// executes this SQL for MySQL: SELECT COUNT(id’) FROM “employee’
$count = Yii::$app->db->createCommand ("SELECT COUNT([[id]]) FROM
{{employee}}")

->queryScalar();

Using Table Prefix

If most of your DB tables names share a common prefix, you may use the
table prefix feature provided by Yii DAO.

First, specify the table prefix via the yii\db\Connection: : $tablePrefix
property in the application config:

return [
/7
'components' => [
/..
'db' => [

/.

256 CHAPTER 6. WORKING WITH DATABASES

'tablePrefix' => 'tbl_',

]’
1;

Then in your code, whenever you need to refer to a table whose name contains
such a prefix, use the syntax {{%table_name}}. The percentage character will
be automatically replaced with the table prefix that you have specified when
configuring the DB connection. For example,

// ezecutes this SQL for MySQL: SELECT COUNT(td’) FROM “tbl_employee’
$count = Yii::$app->db->createCommand("SELECT COUNT([[id]]) FROM
{{/employee}}")

->queryScalar();

6.1.4 Performing Transactions

When running multiple related queries in a sequence, you may need to wrap
them in a transaction to ensure the integrity and consistency of your data-
base. If any of the queries fails, the database will be rolled back to the state
as if none of these queries were executed.

The following code shows a typical way of using transactions:

Yii::$app->db->transaction(function($db) {
$db->createCommand ($sqll) ->execute();
$db->createCommand ($sql2) ->execute () ;

// ... ezecuting other SQL statements ...

B

The above code is equivalent to the following, which gives you more control
about the error handling code:

$db = Yii::$app->db;

$transaction = $db->beginTransaction();

try {
$db->createCommand ($sqll) ->execute();
$db->createCommand ($sql2) ->execute () ;
// ... ezecuting other SQL statements ...

$transaction->commit () ;

} catch(\Exception $e) {
$transaction->rollBack();
throw $e;

} catch(\Throwable $e) {
$transaction->rollBack();
throw $e;

By calling the beginTransaction() method, a new transaction is started.
The transaction is represented as a yii\db\Transaction object stored in

6.1. DATABASE ACCESS OBJECTS 257

the $transaction variable. Then, the queries being executed are enclosed in
a try...catch... block. If all queries are executed successfully, the commit ()
method is called to commit the transaction. Otherwise, if an exception will
be triggered and caught, the rollBack() method is called to roll back the
changes made by the queries prior to that failed query in the transaction.
throw $e will then re-throw the exception as if we had not caught it, so the
normal error handling process will take care of it.

Note: in the above code we have two catch-blocks for compat-
ibility with PHP 5.x and PHP 7.x. \Exception implements the
\Throwable interface'? since PHP 7.0, so you can skip the part
with \Exception if your app uses only PHP 7.0 and higher.

Specifying Isolation Levels

Yii also supports setting isolation levels!? for your transactions. By default,
when starting a new transaction, it will use the default isolation level set by
your database system. You can override the default isolation level as follows,

$isolationLevel = \yii\db\Transaction::REPEATABLE_READ;
Yii::$app->db->transaction(function ($db) {

3}, $i;;iationLevel);

// or alternatively

$transaction = Yii::$app->db->beginTransaction($isolationLevel);

Yii provides four constants for the most common isolation levels:
e yiil\db\Transaction: :READ_UNCOMMITTED - the weakest level, Dirty
reads, non-repeatable reads and phantoms may occur.
e yii\db\Transaction: :READ_COMMITTED - avoid dirty reads.
e yii\db\Transaction: :REPEATABLE_READ - avoid dirty reads and non-
repeatable reads.
e yii\db\Transaction: :SERIALIZABLE - the strongest level, avoids all
of the above named problems.
Besides using the above constants to specify isolation levels, you may also use
strings with a valid syntax supported by the DBMS that you are using. For
example, in PostgreSQL, you may use "SERIALIZABLE READ ONLY DEFERRABLE".
Note that some DBMS allow setting the isolation level only for the whole
connection. Any subsequent transactions will get the same isolation level
even if you do not specify any. When using this feature you may need to set

3https://www.php.net/manual/en/class.throwable.php
Y“http://en.wikipedia.org/wiki/Isolation_%28database_systems%29#Isolation_
levels

https://www.php.net/manual/en/class.throwable.php
http://en.wikipedia.org/wiki/Isolation_%28database_systems%29#Isolation_levels
http://en.wikipedia.org/wiki/Isolation_%28database_systems%29#Isolation_levels

258 CHAPTER 6. WORKING WITH DATABASES

the isolation level for all transactions explicitly to avoid conflicting settings.
At the time of this writing, only MSSQL and SQLite are affected by this
limitation.

Note: SQLite only supports two isolation levels, so you can only
use READ UNCOMMITTED and SERIALIZABLE. Usage of other levels will
result in an exception being thrown.

Note: PostgreSQL does not allow setting the isolation level be-
fore the transaction starts so you can not specify the isolation
level directly when starting the transaction. You have to call
yii\db\Transaction: :setIsolationLevel() in this case after
the transaction has started.

Nesting Transactions

If your DBMS supports Savepoint, you may nest multiple transactions like
the following:

Yii::$app->db->transaction(function ($db) {
// outer transaction

$db->transaction(function ($db) {
// inner transaction
B
b

Or alternatively,

$db = Yii::$app->db;
$outerTransaction = $db->beginTransaction();
try {

$db->createCommand ($sqll) ->execute();

$innerTransaction = $db->beginTransaction();

try {
$db->createCommand ($sql2) ->execute () ;
$innerTransaction->commit () ;

} catch (\Exception $e) {
$innerTransaction->rollBack();
throw $e;

} catch (\Throwable $e) {
$innerTransaction->rollBack();
throw $e;

}

$outerTransaction->commit () ;

} catch (\Exception $e) {
$outerTransaction->rollBack();
throw $e;

6.1. DATABASE ACCESS OBJECTS 259

} catch (\Throwable $e) {
$outerTransaction->rollBack();
throw $e;

6.1.5 Replication and Read-Write Splitting

Many DBMS support database replication'® to get better database availab-
ility and faster server response time. With database replication, data are
replicated from the so-called master servers to slave servers. All writes and
updates must take place on the master servers, while reads may also take
place on the slave servers.

To take advantage of database replication and achieve read-write split-
ting, you can configure a yii\db\Connection component like the following:

[

'class' => 'yiildb\Connection',

// configuration for the master
'dsn' => 'dsn for master server',
'username' => 'master',
'password' => '',

// common configuration for slaves
'slaveConfig' => [
'username' => 'slave',
'password' => '',
'attributes' => [
// use a smaller connection timeout
PDO: :ATTR_TIMEOUT => 10,
1,
1,

// list of slave configurations

'slaves' => [
['dsn' => 'dsn for slave server 1'],
['dsn' => 'dsn for slave server 2'],
['dsn' => 'dsn for slave server 3'],
['dsn' => 'dsn for slave server 4'],

1,

]

The above configuration specifies a setup with a single master and multiple
slaves. One of the slaves will be connected and used to perform read queries,
while the master will be used to perform write queries. Such read-write
splitting is accomplished automatically with this configuration. For example,

// create a Connection instance using the above configuration
Yii::$app->db = Yii::createObject($config);

http://en.wikipedia.org/wiki/Replication_(computing)#Database_
replication

http://en.wikipedia.org/wiki/Replication_(computing)#Database_replication
http://en.wikipedia.org/wiki/Replication_(computing)#Database_replication

260 CHAPTER 6. WORKING WITH DATABASES

// query against one of the slaves
$rows = Yii::$app->db->createCommand('SELECT * FROM user LIMIT
10') ->queryAl1();

// query against the master
Yii::$app->db->createCommand ("UPDATE user SET username='demo' WHERE
id=1")->execute();

Info: Queries performed by calling yii\db\Command: : execute ()

are considered as write queries, while all other queries done through

one of the “query” methods of yii\db\Command are read queries.

You can get the currently active slave connection via Yii: :$app->db->slave.

The Connection component supports load balancing and failover between
slaves. When performing a read query for the first time, the Connection
component will randomly pick a slave and try connecting to it. If the slave
is found “dead”, it will try another one. If none of the slaves is available,
it will connect to the master. By configuring a server status cache, a
“dead” server can be remembered so that it will not be tried again during a
certain period of time.

Info: In the above configuration, a connection timeout of 10
seconds is specified for every slave. This means if a slave cannot
be reached in 10 seconds, it is considered as “dead”. You can
adjust this parameter based on your actual environment.

You can also configure multiple masters with multiple slaves. For example,

'class' => 'yii\db\Connection',

// common configuration for masters
'masterConfig' => [
'username' => 'master',
'password' => '',
'attributes' => [
// use a smaller connection timeout
PDO: : ATTR_TIMEOUT => 10,
1,
1,

// list of master configurations
'masters' => [
['dsn' => 'dsn for master server 1'],
['dsn' => 'dsn for master server 2'],

],

// common configuration for slaves
'slaveConfig' => [

6.1. DATABASE ACCESS OBJECTS 261

'username' => 'slave',
'password' => '',
'attributes' => [
// use a smaller comnection timeout
PDO: : ATTR_TIMEOUT => 10,
1,
1,

// list of slave configurations
'slaves' => [

['dsn' => 'dsn for slave server 1'],
['dsn' => 'dsn for slave server 2'],
['dsn' => 'dsn for slave server 3'],
['dsn' => 'dsn for slave server 4'],

],

The above configuration specifies two masters and four slaves. The Connection
component also supports load balancing and failover between masters just
as it does between slaves. A difference is that when none of the masters are
available an exception will be thrown.

Note: When you use the masters property to configure one or
multiple masters, all other properties for specifying a database
connection (e.g. dsn, username, password) with the Connection ob-
ject itself will be ignored.

By default, transactions use the master connection. And within a transac-
tion, all DB operations will use the master connection. For example,

$db = Yii::$app->db;
// the transaction is started on the master connection
$transaction = $db->beginTransaction();

try {
// both queries are performed against the master
$rows = $db->createCommand('SELECT * FROM user LIMIT 10')->queryAll();
$db->createCommand ("UPDATE user SET username='demo' WHERE
id=1")->execute();

$transaction->commit () ;

} catch(\Exception $e) {
$transaction->rollBack();
throw $e;

} catch(\Throwable $e) {
$transaction->rollBack();
throw $e;

If you want to start a transaction with the slave connection, you should
explicitly do so, like the following:

262 CHAPTER 6. WORKING WITH DATABASES

$transaction = Yii::$app->db->slave->beginTransaction();

Sometimes, you may want to force using the master connection to perform
a read query. This can be achieved with the useMaster () method:

$rows = Yii::$app->db->useMaster(function ($db) {
return $db->createCommand('SELECT * FROM user LIMIT 10')->queryAll();
1N

You may also directly set Yii::$app->db->enableSlaves to be false to direct
all queries to the master connection.

6.1.6 Working with Database Schema

Yii DAO provides a whole set of methods to let you manipulate the database
schema, such as creating new tables, dropping a column from a table, etc.
These methods are listed as follows:
e createTable(): creating a table
renameTable(): renaming a table
dropTable(): removing a table
truncateTable(): removing all rows in a table
addColumn (): adding a column
renameColumn (): renaming a column
dropColumn(): removing a column
alterColumn(): altering a column
addPrimaryKey(): adding a primary key
dropPrimaryKey(): removing a primary key
addForeignKey(): adding a foreign key
dropForeignKey (): removing a foreign key
createIndex(): creating an index
e dropIndex(): removing an index
These methods can be used like the following:

// CREATE TABLE

Yii::$app->db->createCommand() ->createTable('post', [
|idl :> lpkl s
'title' => 'string',
'text' => 'text',

D

The above array describes the name and types of the columns to be created.
For the column types, Yii provides a set of abstract data types, that allow
you to define a database agnostic schema. These are converted to DBMS
specific type definitions dependent on the database, the table is created in.
Please refer to the API documentation of the createTable ()-method for
more information.

6.2. QUERY BUILDER 263

Besides changing the database schema, you can also retrieve the definition
information about a table through the getTableSchema() method of a DB
connection. For example,

$table = Yii::$app->db->getTableSchema('post');

The method returns a yii\db\TableSchema object which contains the in-
formation about the table’s columns, primary keys, foreign keys, etc. All
these information are mainly utilized by query builder and active record to
help you write database-agnostic code.

6.2 Query Builder

Built on top of Database Access Objects, query builder allows you to con-

struct a SQL query in a programmatic and DBMS-agnostic way. Compared

to writing raw SQL statements, using query builder will help you write more

readable SQL-related code and generate more secure SQL statements.
Using query builder usually involves two steps:

1. Build a yii\db\Query object to represent different parts (e.g. SELECT,
FrOM) of a SELECT SQL statement.

2. Execute a query method (e.g. a110) of yii\db\Query to retrieve data
from the database.

The following code shows a typical way of using query builder:

$rows = (new \yii\db\Query())
->select(['id', 'email'l])
->from('user"')
->where(['last_name' => 'Smith'])
->1imit (10)
->allQ);

The above code generates and executes the following SQL query, where the
:last_name parameter is bound with the string 'Smith'.

SELECT “id~, “email~

FROM “user-

WHERE ~last_name ™ = :last_name
LIMIT 10

Info: You usually mainly work with yii\db\Query instead of
yii\db\QueryBuilder. The latter is invoked by the former im-
plicitly when you call one of the query methods. yii\db\QueryBuilder
is the class responsible for generating DBMS-dependent SQL
statements (e.g. quoting table/column names differently) from
DBMS-independent yii\db\Query objects.

264 CHAPTER 6. WORKING WITH DATABASES

6.2.1 Building Queries

To build a yii\db\Query object, you call different query building methods to
specify different parts of a SQL query. The names of these methods resemble
the SQL keywords used in the corresponding parts of the SQL statement.
For example, to specify the FroM part of a SQL query, you would call the
from() method. All the query building methods return the query object
itself, which allows you to chain multiple calls together.

In the following, we will describe the usage of each query building method.

select ()

The select() method specifies the SELECT fragment of a SQL statement.
You can specify columns to be selected in either an array or a string, like the
following. The column names being selected will be automatically quoted
when the SQL statement is being generated from a query object.

$query->select(['id', 'email'l]);
// equivalent to:
$query->select('id, email');

The column names being selected may include table prefixes and/or column
aliases, like you do when writing raw SQL queries. For example,

$query->select(['user.id AS user_id', 'email']);
// equivalent to:

$query->select('user.id AS user_id, email');

If you are using the array format to specify columns, you can also use the
array keys to specify the column aliases. For example, the above code can
be rewritten as follows,

$query->select(['user_id' => 'user.id', 'email']);

If you do not call the select() method when building a query, * will be
selected, which means selecting all columns.

Besides column names, you can also select DB expressions. You must
use the array format when selecting a DB expression that contains commas
to avoid incorrect automatic name quoting. For example,

$query->select (["CONCAT (first_name, ' ', last_name) AS full_name",
'email']);

6.2. QUERY BUILDER 265

As with all places where raw SQL is involved, you may use the DBMS ag-
nostic quoting syntax for table and column names when writing DB expres-
sions in select.

Starting from version 2.0.1, you may also select sub-queries. You should
specify each sub-query in terms of a yii\db\Query object. For example,

$subQuery = (new Query())->select('COUNT(*)')->from('user');

// SELECT “4d°, (SELECT COUNT(*) FROM “user’) AS “count’ FROM “post’
$query = (new Query())->select(['id', 'count' => $subQuery])->from('post');

To select distinct rows, you may call distinct (), like the following:

// SELECT DISTINCT ‘user_id ...
$query->select ('user_id')->distinct();

You can call addSelect () to select additional columns. For example,

$query->select(['id', 'username'])
->addSelect(['email']);

from()

The from() method specifies the FrRoM fragment of a SQL statement. For
example,

// SELECT * FROM “user’
$query->from('user');

You can specify the table(s) being selected from in either a string or an array.
The table names may contain schema prefixes and/or table aliases, like you
do when writing raw SQL statements. For example,

$query->from(['public.user u', 'public.post p'l);
// equivalent to:

$query->from('public.user u, public.post p');

If you are using the array format, you can also use the array keys to specify
the table aliases, like the following;:

$query->from(['u' => 'public.user', 'p' => 'public.post'l);

Besides table names, you can also select from sub-queries by specifying them
in terms of yii\db\Query objects. For example,

$subQuery = (new Query())->select('id')->from('user')->where('status=1');

// SELECT * FROM (SELECT “id’ FROM ‘user’ WHERE status=1) u
$query->from(['u' => $subQuery]l);

266 CHAPTER 6. WORKING WITH DATABASES

Prefixes Also a default tablePrefix can be applied. Implementation in-
structions are in the “Quoting Tables” section of the “Database Access Ob-
jects” guide.

where ()

The where () method specifies the wHERE fragment of a SQL query. You can
use one of the four formats to specify a WHERE condition:

string format, e.g., 'status=1"

hash format, e.g. ['status' => 1, 'type' => 2]

operator format, e.g. ['like', 'name', 'test']

object fornlat,e.g. new LikeCondition('name', 'LIKE', 'test')

String Format String format is best used to specify very simple condi-
tions or if you need to use built-in functions of the DBMS. It works as if you
are writing a raw SQL. For example,

$query->where('status=1');

// or use parameter binding to bind dynamic parameter values
$query->where('status=:status', [':status' => $status]);

// raw SQL using MySQL YEAR() function on a date field
$query->where (' YEAR (somedate) = 2015');

Do NOT embed variables directly in the condition like the following, espe-
cially if the variable values come from end user inputs, because this will make
your application subject to SQL injection attacks.

// Dangerous! Do NOT do this unless you are very certain $status must be an
integer.
$query->where ("status=$status");

When using parameter binding, you may call params() or addParams() to
specify parameters separately.

$query->where('status=:status')
->addParams ([':status' => $status]);

As with all places where raw SQL is involved, you may use the DBMS ag-
nostic quoting syntax for table and column names when writing conditions
in string format.

Hash Format Hash format is best used to specify multiple AnD-concatenated
sub-conditions each being a simple equality assertion. It is written as an ar-
ray whose keys are column names and values the corresponding values that
the columns should be. For example,

6.2. QUERY BUILDER 267

// ...WHERE ("status’ = 10) AND (type IS NULL) AND ("id" IN (4, 8, 15))
$query->where ([

'status' => 10,

'type' => null,

'id' => [4, 8, 15],
1PN

As you can see, the query builder is intelligent enough to properly handle
values that are nulls or arrays.
You can also use sub-queries with hash format like the following:

$userQuery = (new Query())->select('id')->from('user');

// ...WHERE “td’ IN (SELECT “id" FROM “user’)
$query->where(['id' => $userQueryl);

Using the Hash Format, Yii internally applies parameter binding for values,
so in contrast to the string format, here you do not have to add parameters
manually. However, note that Yii never escapes column names, so if you pass
a variable obtained from user side as a column name without any additional
checks, the application will become vulnerable to SQL injection attack. In
order to keep the application secure, either do not use variables as column
names or filter variable against allowlist. In case you need to get column
name from user, read the Filtering Data guide article. For example the
following code is vulnerable:

// Vulnerable code:

$column = $request->get('column');

$value = $request->get('value');
$query->where([$column => $valuel);

// $value is safe, but $column name won't be encoded!

Operator Format Operator format allows you to specify arbitrary con-
ditions in a programmatic way. It takes the following format:

[operator, operandl, operand2, ...]

where the operands can each be specified in string format, hash format or
operator format recursively, while the operator can be one of the following:
e and: the operands should be concatenated together using anp. For ex-
ample, ['and', 'id=1', 'id=2'] will generate id=1 AND id=2. If an op-
erand is an array, it will be converted into a string using the rules
described here. For example, ['and', 'type=1', ['or', 'id=1', 'id=2']]
will generate type=1 AND (id=1 OR id=2). The method will NOT do any
quoting or escaping.
e or: similar to the and operator except that the operands are concaten-
ated using OR.

268 CHAPTER 6. WORKING WITH DATABASES

® not: requires only operand 1, which will be wrapped in N0T(). For ex-
ample, ['not', 'id=1'] will generate NOT (id=1). Operand 1 may also
be an array to describe multiple expressions. For example ['not’,
['status' => 'draft', 'name' => 'example'l]] will generate NOT ((status='draft')
AND (name='example')).

® between: operand 1 should be the column name, and operand 2 and

3 should be the starting and ending values of the range that the

column is in. For example, ['between', 'id', 1, 10] will generate id

BETWEEN 1 AND 10. In case you need to build a condition where value

is between two columns (like 11 BETWEEN min_id AND max_id), you should

use BetweenColumnsCondition. See Conditions — Object Format chapter
to learn more about object definition of conditions.

not between: similar to between except the BETWEEN is replaced with NOT

BETWEEN in the generated condition.

e in: operand 1 should be a column or DB expression. Operand 2 can
be either an array or a Query object. It will generate an IN condition.
If Operand 2 is an array, it will represent the range of the values that
the column or DB expression should be; If Operand 2 is a Query object,
a sub-query will be generated and used as the range of the column or
DB expression. For example, ['in', 'id', [1, 2, 311 will generate id
IN (1, 2, 3). The method will properly quote the column name and
escape values in the range. The in operator also supports composite
columns. In this case, operand 1 should be an array of the columns,
while operand 2 should be an array of arrays or a Query object repres-
enting the range of the columns. For example, ['in', ['id', 'name'],
[['id' => 1, 'name' => 'oy'l]]] will generate (id, name) IN ((1, 'oy')).

e not in: similar to the in operator except that 1n is replaced with noT
IV in the generated condition.

e like: operand 1 should be a column or DB expression, and operand
2 be a string or an array representing the values that the column or
DB expression should be like. For example, ['1ike', 'name', 'tester']
will generate name LIKE 'Y%tester’%'. When the value range is given as
an array, multiple LIKE predicates will be generated and concatenated
using AND. For example, ['1like', 'name', ['test', 'sample'l]] will gener-
ate name LIKE 'Ytest%' AND name LIKE '%sample%'. You may also provide
an optional third operand to specify how to escape special characters
in the values. The operand should be an array of mappings from the
special characters to their escaped counterparts. If this operand is not
provided, a default escape mapping will be used. You may use false
or an empty array to indicate the values are already escaped and no
escape should be applied. Note that when using an escape mapping
(or the third operand is not provided), the values will be automatically
enclosed within a pair of percentage characters.

6.2. QUERY BUILDER 269

Note: When using PostgreSQL you may also use ilike!'S
instead of 1ike for case-insensitive matching.

e or like: similar to the like operator except that or is used to concat-
enate the LIKE predicates when operand 2 is an array.

® not like: similar to the like operator except that LIKE is replaced with
NOT LIKE in the generated condition.

® or not like: similar to the not like operator except that oR is used to
concatenate the NOT LIKE predicates.

e exists: requires one operand which must be an instance of yii\db
\Query representing the sub-query. It will build an EXISTS (sub-query)
expression.

® not exists: similar to the exists operator and builds a NOT EXISTS (sub-query)

expression.
e > <= or any other valid DB operator that takes two operands: the first

operand must be a column name while the second operand a value.

For example, ['>', 'age', 10] will generate age>10.
Using the Operator Format, Yii internally uses parameter binding for values,
so in contrast to the string format, here you do not have to add parameters
manually. However, note that Yii never escapes column names, so if you pass
a variable as a column name, the application will likely become vulnerable
to SQL injection attack. In order to keep application secure, either do not
use variables as column names or filter variable against allowlist. In case you
need to get column name from user, read the Filtering Data guide article.
For example the following code is vulnerable:

// Vulnerable code:

$column = $request->get('column');

$value = $request->get('value');

$query->where(['=", $column, $valuel);

// $value is safe, but $column name won't be encoded!

Object Format Object Form is available since 2.0.14 and is both most
powerful and most complex way to define conditions. You need to follow it
either if you want to build your own abstraction over query builder or if you
want to implement your own complex conditions.

Instances of condition classes are immutable. Their only purpose is to
store condition data and provide getters for condition builders. Condition
builder is a class that holds the logic that transforms data stored in condition
into the SQL expression.

Internally the formats described above are implicitly converted to object
format prior to building raw SQL, so it is possible to combine formats in a
single condition:

https://wuw.postgresql.org/docs/8.3/static/functions-matching.html#
FUNCTIONS-LIKE

https://www.postgresql.org/docs/8.3/static/functions-matching.html#FUNCTIONS-LIKE
https://www.postgresql.org/docs/8.3/static/functions-matching.html#FUNCTIONS-LIKE

270 CHAPTER 6. WORKING WITH DATABASES

$query->andWhere (new OrCondition([
new InCondition('type', 'in', $types),
['like', 'name', 'Y%good%'],
'disabled=false'’

ID))

Conversion from operator format into object format is performed according
to QueryBuilder: :conditionClasses property, that maps operators names
to representative class names:

® AND, OR -> yiildb\conditions\ConjunctionCondition

® NOT -> yii\db\conditions\NotCondition

® IN, NOT IN -> yiildb\conditions\InCondition

® BETWEEN, NOT BETWEEN -> yii\db\conditions\BetweenCondition
And so on.

Using the object format makes it possible to create your own conditions
or to change the way default ones are built. See Adding Custom Conditions
and Expressions chapter to learn more.

Appending Conditions You can use andWhere() or orWhere() to ap-
pend additional conditions to an existing one. You can call them multiple
times to append multiple conditions separately. For example,

$status
$search

10;
Iyiil;

$query->where(['status' => $status]);

if ('empty($search)) {
$query->andWhere(['1like', 'title', $search]);
}

If $search is not empty, the following wHERE condition will be generated:

WHERE (" status™ = 10) AND (" title” LIKE 'Jyii%')

Filter Conditions When building wHERE conditions based on input from
end users, you usually want to ignore those input values, that are empty. For
example, in a search form that allows you to search by username and email,
you would like to ignore the username/email condition if the user does not
enter anything in the username/email input field. You can achieve this goal
by using the filterWhere() method:

// $username and $email are from user inputs
$query->filterWhere ([

'username' => $username,

'email' => $email,

D;

6.2. QUERY BUILDER 271

The only difference between filterWhere() and where() is that the former
will ignore empty values provided in the condition in hash format. So if
$email is empty while $username is not, the above code will result in the SQL
condition WHERE username=:username.

Info: A value is considered empty if it is null, an empty array,
an empty string or a string consisting of whitespaces only.

Like andWhere () and orWhere (), you can use andFilterWhere () and orFilterWhere ()
to append additional filter conditions to the existing one.

Additionally, there is yii\db\Query: :andFilterCompare () that can in-
telligently determine operator based on what’s in the value:
$query->andFilterCompare('name', 'John Doe');

$query->andFilterCompare('rating', '>9');
$query->andFilterCompare('value', '<=100');

You can also specify operator explicitly:
$query->andFilterCompare('name', 'Doe', 'like');

Since Yii 2.0.11 there are similar methods for HAVING condition:
e filterHaving()
e andFilterHaving()
e orFilterHaving()

orderBy ()

The orderBy () method specifies the orDER BY fragment of a SQL query. For
example,
// ... ORDER BY “id ASC, “name" DESC
$query->orderBy ([
'id' => SORT_ASC,
'name' => SORT_DESC,
IDH

In the above code, the array keys are column names while the array values are
the corresponding order by directions. The PHP constant SORT_ASC specifies
ascending sort and SORT_DESC descending sort.

If orDER BY only involves simple column names, you can specify it using a
string, just like you do when writing raw SQL statements. For example,

$query->orderBy('id ASC, name DESC');

Note: You should use the array format if ORDER BY involves some
DB expression.

You can call addOrderBy () to add additional columns to the ORDER BY frag-
ment. For example,

$query->orderBy ('id ASC')
->add0rderBy('name DESC');

272 CHAPTER 6. WORKING WITH DATABASES

groupBy ()

The groupBy () method specifies the Group BY fragment of a SQL query. For
example,

// ... GROUP BY “id’, ‘status’

$query->groupBy (['id', 'status'l);

If crouP BY only involves simple column names, you can specify it using a
string, just like you do when writing raw SQL statements. For example,

$query->groupBy ('id, status');

Note: You should use the array format if GROUP BY involves some
DB expression.

You can call addGroupBy () to add additional columns to the Group BY frag-
ment. For example,

$query->groupBy(['id', 'status'])
->addGroupBy('age') ;

having()

The having () method specifies the HAVING fragment of a SQL query. It takes
a condition which can be specified in the same way as that for where(). For
example,

// ... HAVING “status ™ = 1
$query->having(['status' => 11);

Please refer to the documentation for where() for more details about how to
specify a condition.

You can call andHaving () or orHaving () to append additional conditions
to the HAVING fragment. For example,
// ... HAVING ("status™ = 1) AND (‘age’ > 30)

$query->having(['status' => 1])
->andHaving(['>', 'age', 30]);

limit () and offset()

The 1imit () and offset() methods specify the LIMIT and OFFSET fragments
of a SQL query. For example,

// ... LIMIT 10 OFFSET 20
$query->1imit (10)->offset (20);

If you specify an invalid limit or offset (e.g. a negative value), it will be
ignored.

Info: For DBMS that do not support LIMIT and OFFSET (e.g.
MSSQL), query builder will generate a SQL statement that emu-
lates the LIMIT/OFFSET behavior.

6.2. QUERY BUILDER 273

join()
The join() method specifies the JoIn fragment of a SQL query. For example,

// ... LEFT JOIN “post™ ON “post”. user_td’ = ‘user . id’
$query->join('LEFT JOIN', 'post', 'post.user_id = user.id');

The join() method takes four parameters:

e $type: join type, e.g., 'INNER JOIN',6 'LEFT JOIN'.

e $table: the name of the table to be joined.

e $on: optional, the join condition, i.e., the oN fragment. Please refer
to where() for details about specifying a condition. Note, that the
array syntax does not work for specifying a column based condition,
e.g. ['user.id' => 'comment.userId'] will result in a condition where
the user id must be equal to the string 'comment.userId'. You should
use the string syntax instead and specify the condition as 'user.id =
comment.userId’.

e $params: optional, the parameters to be bound to the join condition.
You can use the following shortcut methods to specify INNER JOIN, LEFT JOIN
and RIGHT JOIN, respectively.

e innerJoin()

e leftJoin()

e rightJoin()

For example,

$query->leftJoin('post', 'post.user_id = user.id');

To join with multiple tables, call the above join methods multiple times,
once for each table.

Besides joining with tables, you can also join with sub-queries. To do so,
specify the sub-queries to be joined as yii\db\Query objects. For example,

$subQuery = (new \yii\db\Query())->from('post');
$query->leftJoin(['u' => $subQuery], 'u.id = author_id');

In this case, you should put the sub-query in an array and use the array key
to specify the alias.

union()

The union() method specifies the unioN fragment of a SQL query. For ex-
ample,

$queryl = (new \yii\db\Query())
->select("id, category_id AS type, name")
->from('post')
->1imit (10);

274 CHAPTER 6. WORKING WITH DATABASES

$query2 = (new \yii\db\Query())
->select('id, type, name')
->from('user"')
->1imit (10);

$queryl->union($query2) ;

You can call union() multiple times to append more UNION fragments.

withQuery ()

The withQuery () method specifies the wiTH prefix of a SQL query. You can
use it instead of subquery for more readability and some unique features
(recursive CTE). Read more at modern-sql'”. For example, this query will
select all nested permissions of admin with their children recursively,

$initialQuery = (new \yii\db\Query())
->select(['parent', 'child'])
->from(['aic' => 'auth_item_child'])
->where(['parent' => 'admin']l);

$recursiveQuery = (new \yii\db\Query())
->select(['aic.parent', 'aic.child'])
->from(['aic' => 'auth_item_child'])
->innerJoin('tl', 'tl.child = aic.parent');

$mainQuery = (new \yii\db\Query())
->select(['parent', 'child'])
>from('t1l')
->withQuery($initialQuery->union($recursiveQuery), 'tl', true);

withQuery () can be called multiple times to prepend more CTE’s to main
query. Queries will be prepend in same order as they attached. If one of
query is recursive then whole CTE become recursive.

6.2.2 Query Methods

yii\db\Query provides a whole set of methods for different query purposes:

e all(): returns an array of rows with each row being an associative
array of name-value pairs.

e one(): returns the first row of the result.

e column(): returns the first column of the result.

e scalar(): returns a scalar value located at the first row and first
column of the result.

e exists(): returns a value indicating whether the query contains any
result.

e count(): returns the result of a cCouNT query.

"https://modern-sql.com/feature/with

https://modern-sql.com/feature/with

6.2. QUERY BUILDER 275

e Other aggregation query methods, including sum($q), average($q),
max($q), min($q). The $q parameter is mandatory for these methods
and can be either a column name or a DB expression.

For example,

// SELECT “id°, “email’ FROM ‘user’
$rows = (new \yii\db\Query())
->select(['id', 'email'])
->from('user')
->all(Q);

// SELECT * FROM “user ' WHERE ‘username’ LIKE “Jtest]
$row = (new \yii\db\Query())

->from('user"')

->where(['like', 'username', 'test'])

->one();

Note: The one() method only returns the first row of the query
result. It does NOT add LIMIT 1 to the generated SQL statement.
This is fine and preferred if you know the query will return only
one or a few rows of data (e.g. if you are querying with some
primary keys). However, if the query may potentially result in
many rows of data, you should call 1imit (1) explicitly to improve
the performance, e.g., (new \yii\db\Query())->from('user')->1limit(1)->one().

All these query methods take an optional $db parameter representing the DB
connection that should be used to perform a DB query. If you omit this
parameter, the db application component will be used as the DB connection.
Below is another example using the count () query method:

// executes SQL: SELECT COUNT(*) FROM “user WHERE ‘last_mname =:last_name
$count = (new \yii\db\Query())

->from('user"')

->where(['last_name' => 'Smith'])

->count();

When you call a query method of yii\db\Query, it actually does the follow-
ing work internally:
e Call yii\db\QueryBuilder to generate a SQL statement based on the
current construct of yii\db\Query;
e Create a yii\db\Command object with the generated SQL statement;
e Call a query method (e.g. queryAl1()) of yii\db\Command to execute
the SQL statement and retrieve the data.
Sometimes, you may want to examine or use the SQL statement built from
a yii\db\Query object. You can achieve this goal with the following code:

$command = (new \yii\db\Query())
->select(['id', 'email'l])

276 CHAPTER 6. WORKING WITH DATABASES

->from('user')
->where(['last_name' => 'Smith'])
->1imit (10)

->createCommand () ;

// show the S{L statement

echo $command->sql;

// show the parameters to be bound
print_r($command->params) ;

// returns all rows of the query result
$rows = $command->queryAll();

Indexing Query Results

When you call all(), it will return an array of rows which are indexed
by consecutive integers. Sometimes you may want to index them differently,
such as indexing by a particular column or expression values. You can achieve
this goal by calling indexBy () before all(). For example,

// returns [100 => ['sd' => 100, 'username' => '...', ...], 101 => [...],
103 => [...], ...]
$query = (new \yii\db\Query())

->from('user')

->1imit (10)

->indexBy('id")

->all(Q);

The column which name is passed into indexBy() method must be present
in the result set in order for indexing to work - it is up to the developer to
take care of it.

To index by expression values, pass an anonymous function to the indexBy ()
method:

$query = (new \yii\db\Query())
->from('user')
->indexBy (function ($row) {
return $row['id'] . $row['username'];

P ->all();

The anonymous function takes a parameter $row which contains the current
row data and should return a scalar value which will be used as the index
value for the current row.

Note: In contrast to query methods like groupBy () or orderBy ()
which are converted to SQL and are part of the query, this
method works after the data has been fetched from the data-
base. That means that only those column names can be used
that have been part of SELECT in your query. Also if you se-
lected a column with table prefix, e.g. customer.id, the result set

6.2. QUERY BUILDER 277

will only contain id so you have to call ->indexBy('id') without
table prefix.

Batch Query

When working with large amounts of data, methods such as yii\db\Query
::all () are not suitable because they require loading the whole query result
into the client’s memory. To solve this issue Yii provides batch query support.
The server holds the query result, and the client uses a cursor to iterate over
the result set one batch at a time.

Warning: There are known limitations and workarounds for the
MySQL implementation of batch queries. See below.

Batch query can be used like the following;:
use yii\db\Query;

$query = (new Query())
->from('user')
->orderBy('id');

foreach ($query->batch() as $users) {
// $users is an array of 100 or fewer rows from the user table

}

// or to tterate the row one by one

foreach ($query->each() as $user) {
// data is being fetched from the server in batches of 100,
// but $user represents one row of data from the user table

The method yii\db\Query: :batch() and yii\db\Query: :each() return an
yii\db\BatchQueryResult object which implements the Iterator interface
and thus can be used in the foreach construct. During the first iteration, a
SQL query is made to the database. Data is then fetched in batches in the
remaining iterations. By default, the batch size is 100, meaning 100 rows
of data are being fetched in each batch. You can change the batch size by
passing the first parameter to the batch() or each() method.

Compared to the yii\db\Query::all(), the batch query only loads 100
rows of data at a time into the memory.

If you specify the query result to be indexed by some column via yii\db
\Query: :indexBy (), the batch query will still keep the proper index.

For example:

$query = (new \yii\db\Query())
->from('user')
->indexBy('username') ;

278 CHAPTER 6. WORKING WITH DATABASES

foreach ($query->batch() as $users) {
// $users is indezed by the "username" column

}

foreach ($query->each() as $username => $user) {
/7
}

Limitations of batch query in MySQL MySQL implementation of
batch queries relies on the PDO driver library. By default, MySQL queries
are buffered!®. This defeats the purpose of using the cursor to get the data,
because it doesn’t prevent the whole result set from being loaded into the
client’s memory by the driver.

Note: When 1libmysqlclient is used (typical of PHP5), PHP’s
memory limit won’t count the memory used for result sets. It
may seem that batch queries work correctly, but in reality the
whole dataset is loaded into client’s memory, and has the poten-
tial of using it up.

To disable buffering and reduce client memory requirements, PDO connec-
tion property PDO: :MYSQL_ATTR_USE_BUFFERED_QUERY must be set to false. How-
ever, until the whole dataset has been retrieved, no other query can be made
through the same connection. This may prevent ActiveRecord from making
a query to get the table schema when it needs to. If this is not a problem
(the table schema is cached already), it is possible to switch the original
connection into unbuffered mode, and then roll back when the batch query
is done.

Yii::$app->db->pdo->setAttribute (\PDO: :MYSQL_ATTR_USE_BUFFERED_QUERY,
false);

// Do batch query

Yii::$app->db->pdo->setAttribute (\PDO: :MYSQL_ATTR_USE_BUFFERED_QUERY, true);

Note: In the case of MyISAM, for the duration of the batch
query, the table may become locked, delaying or denying write
access for other connections. When using unbuffered queries, try
to keep the cursor open for as little time as possible.

If the schema is not cached, or it is necessary to run other queries while
the batch query is being processed, you can create a separate unbuffered
connection to the database:

¥https://www.php.net/manual/en/mysqlinfo.concepts.buffering.php

https://www.php.net/manual/en/mysqlinfo.concepts.buffering.php

6.2. QUERY BUILDER 279

$unbufferedDb = new \yiildb\Connection([

'dsn' => Yii::$app->db->dsn,

'username' => Yii::$app->db->username,

'password' => Yii::$app->db->password,

'charset' => Yii::$app->db->charset,
D
$unbufferedDb->open() ;
$unbufferedDb->pdo->setAttribute (\PDO: : MYSOL_ATTR_USE_BUFFERED_QUERY,
false);

If you want to ensure that the $unbuffereddb has exactly the same PDO attrib-
utes like the original buffered $db but the PDO: :MYSQL_ATTR_USE_BUFFERED_QUERY
is false, consider a deep copy of $db'?, set it to false manually.

Then, queries are created normally. The new connection is used to run
batch queries and retrieve results either in batches or one by one:

// getting data in batches of 1000

foreach ($query->batch(1000, $unbufferedDb) as $users) {
/7

}

// data is fetched from server in batches of 1000, but is iterated one by
one
foreach ($query->each(1000, $unbufferedDb) as $user) {
/.
}

When the connection is no longer necessary and the result set has been
retrieved, it can be closed:

$unbufferedDb->close();

Note: unbuffered query uses less memory on the PHP-side, but
can increase the load on the MySQL server. It is recommended
to design your own code with your production practice for extra
massive data, for example, divide the range for integer keys, loop
them with Unbuffered Queries?.

Adding custom Conditions and Expressions

As it was mentioned in Conditions — Object Format chapter, it is possible to
create custom condition classes. For example, let’s create a condition that
will check that specific columns are less than some value. Using the operator
format, it would look like the following:

https://github.com/yiisoft/yii2/issues/8420#issuecomment - 301423833
Onttps://github.com/yiisoft/yii2/issues/8420#issuecomment-296109257

https://github.com/yiisoft/yii2/issues/8420#issuecomment-301423833
https://github.com/yiisoft/yii2/issues/8420#issuecomment-296109257

280 CHAPTER 6. WORKING WITH DATABASES

L
'and',
'>', 'posts', $minLimit,
'>', 'comments', $minlimit,
'>' 'reactions', $minLimit,
'>', 'subscriptions', $minLimit
]

When such condition applied once, it is fine. In case it is used multiple times
in a single query it can be optimized a lot. Let’s create a custom condition
object to demonstrate it.

Yii has a ConditionInterface, that must be used to mark classes, that
represent a condition. It requires fromArrayDefinition() method implementa-
tion, in order to make possible to create condition from array format. In case
you don’t need it, you can implement this method with exception throwing.

Since we create our custom condition class, we can build API that suits
our task the most.

namespace app\db\conditions;

class AllGreaterCondition implements \yiildb\conditions\ConditionInterface
{

private $columns;

private $value;

VAL
* @param string[] $columns Array of columns that must be greater, than
$value
* Oparam mized $value the value to compare each $column against.

*/
public function __construct(array $columns, $value)
{
$this->columns = $columns;
$this->value = $value;
}

public static function fromArrayDefinition($operator, $operands)

{

throw new InvalidArgumentException('Not implemented yet, but we will
do it later');
b

public function getColumns() { return $this->columns; }

public function getValue() { return $this->vaule; }

So we can create a condition object:

$conditon = new AllGreaterCondition(['coll', 'col2']l, 42);

But QueryBuilder still does not know, to make an SQL condition out of this
object. Now we need to create a builder for this condition. It must imple-

6.2. QUERY BUILDER 281

ment yii\db\ExpressionBuilderInterface that requires us to implement
a build() method.

namespace app\db\conditions;

class AllGreaterConditionBuilder implements
\yii\db\ExpressionBuilderInterface
{
use \yii\db\ExpressionBuilderTrait; // Contains constructor and
‘queryBuilder’ property.

/**
* @param EzpressionInterface $condition the condition to be built
* Oparam array $params the binding parameters.
* @return AllGreaterCondition
*/
public function build(ExpressionInterface $expression, array &$params =
Hp)
{

$value = $condition->getValue();

$conditions = [1;
foreach ($expression->getColumns() as $column) {
$conditions[] = new SimpleCondition($column, '>', $value);

}

return $this->queryBuilder->buildCondition(new
AndCondition($conditions), $params);

Then simple let QueryBuilder know about our new condition — add a map-
ping for it to the expressionBuilders array. It could be done right from the
application configuration:

'db' => [
'class' => 'yii\db\mysql\Connection',
/7
'queryBuilder' => [

'expressionBuilders' => [
'app\db\conditions\AllGreaterCondition' =>
'app\db\conditions\AllGreaterConditionBuilder"',

1,

1,
1,

Now we can use our condition in where():

$query->andihere (new AllGreaterCondition(['posts', 'comments', 'reactions',
'subscriptions'], $minValue));

If we want to make it possible to create our custom condition using operator
format, we should declare it in QueryBuilder: :conditionClasses:

282 CHAPTER 6. WORKING WITH DATABASES

'db' => [
'class' => 'yii\db\mysql\Connection',
/7
'queryBuilder' => [

'expressionBuilders' => [
'app\db\conditions\AllGreaterCondition' =>
'app\db\conditions\AllGreaterConditionBuilder',

1,

'conditionClasses' => [

"ALL>' => 'app\db\conditions\AllGreaterCondition',

1,

1,
1,

And create a real implementation of A11GreaterCondition: : fromArrayDefinition()
method in app\db\conditions\AllGreaterCondition:

namespace app\db\conditions;

class AllGreaterCondition implements \yiildb\conditions\ConditionInterface
{

// ... see the implementation above

public static function fromArrayDefinition($operator, $operands)
{
return new static($operands[0], $operands[1]);
}
}

After that, we can create our custom condition using shorter operator format:

$query->andWhere(['ALL>', ['posts', 'comments', 'reactiomns',
'subscriptions'], $minValuel);

You might notice, that there was two concepts used: Expressions and Con-
ditions. There is a yii\db\ExpressionInterface that should be used to
mark objects, that require an Expression Builder class, that implements
yii\db\ExpressionBuilderInterface to be built. Also there is a yii\db
\condition\ConditionInterface, that extends ExpressionInterface and
should be used to objects, that can be created from array definition as it was
shown above, but require builder as well.

To summarise:

e Expression - is a Data Transfer Object (DTO) for a dataset, that can
be somehow compiled to some SQL statement (an operator, string,
array, JSON, etc).

e Condition — is an Expression superset, that aggregates multiple Expres-
sions (or scalar values) that can be compiled to a single SQL condition.

You can create your own classes that implement ExpressionInterface to
hide the complexity of transforming data to SQL statements. You will learn
more about other examples of Expressions in the next article;

6.3. ACTIVE RECORD 283

6.3 Active Record

Active Record?! provides an object-oriented interface for accessing and ma-
nipulating data stored in databases. An Active Record class is associated
with a database table, an Active Record instance corresponds to a row of
that table, and an attribute of an Active Record instance represents the value
of a particular column in that row. Instead of writing raw SQL statements,
you would access Active Record attributes and call Active Record methods
to access and manipulate the data stored in database tables.

For example, assume Customer is an Active Record class which is associ-
ated with the customer table and name is a column of the customer table. You
can write the following code to insert a new row into the customer table:

$customer = new Customer();
$customer->name = 'Qiang';
$customer->save();

The above code is equivalent to using the following raw SQL statement
for MySQL, which is less intuitive, more error prone, and may even have
compatibility problems if you are using a different kind of database:

$db->createCommand (' INSERT INTO ~customer™ ("name>) VALUES (:name)', [
':name' => 'Qiang',
1) ->execute();

Yii provides the Active Record support for the following relational databases:
e MySQL 4.1 or later: via yii\db\ActiveRecord

PostgreSQL 7.3 or later: via yii\db\ActiveRecord

SQLite 2 and 3: via yii\db\ActiveRecord

Microsoft SQL Server 2008 or later: via yii\db\ActiveRecord

Oracle: via yii\db\ActiveRecord

CUBRID 9.3 or later: via yii\db\ActiveRecord (Note that due to a

bug?? in the cubrid PDO extension, quoting of values will not work,

so you need CUBRID 9.3 as the client as well as the server)

e Sphinx: via yii\sphinx\ActiveRecord, requires the yii2-sphinx ex-
tension

e ElasticSearch: via yiilelasticsearch\ActiveRecord, requires the

yii2-elasticsearch extension
Additionally, Yii also supports using Active Record with the following NoSQL
databases:
e Redis 2.6.12 or later: viayii\redis\ActiveRecord, requires the yii2-redis
extension
e MongoDB 1.3.0 or later: via yii\mongodb\ActiveRecord, requires the
yii2-mongodb extension

2mttps://en.wikipedia.org/wiki/Active_record_pattern
nttp://jira.cubrid.org/browse/APIS-658

https://en.wikipedia.org/wiki/Active_record_pattern
http://jira.cubrid.org/browse/APIS-658

284 CHAPTER 6. WORKING WITH DATABASES

In this tutorial, we will mainly describe the usage of Active Record for rela-
tional databases. However, most content described here are also applicable
to Active Record for NoSQL databases.

6.3.1 Declaring Active Record Classes

To get started, declare an Active Record class by extending yii\db\ActiveRecord.

Setting a table name

By default each Active Record class is associated with its database table. The
tableName () method returns the table name by converting the class name
via yii\helpers\Inflector: :camel2id(). You may override this method
if the table is not named after this convention.

Also a default tablePrefix can be applied. For example if tablePrefix
1S tbl_, Customer becomes tbl_customer and OrderItem becomes tbl_order_item.

If a table name is given as {{%TableName}}, then the percentage character
% will be replaced with the table prefix. For example, {{%post}} becomes
{{tbl_post}}. The brackets around the table name are used for quoting in an
SQL query.

In the following example, we declare an Active Record class named
Customer for the customer database table.

namespace app\models;
use yii\db\ActiveRecord;

class Customer extends ActiveRecord

{
const STATUS_INACTIVE = 0;
const STATUS_ACTIVE = 1;

J**
* @return string the name of the table associated with this
ActiveRecord class.
*/
public static function tableName()
{
return '{{customer}}';

}

Active records are called “models”

Active Record instances are considered as models. For this reason, we usu-
ally put Active Record classes under the app\models namespace (or other
namespaces for keeping model classes).

6.3. ACTIVE RECORD 285

Because yii\db\ActiveRecord extends from yii\base\Model, it inher-
its all model features, such as attributes, validation rules, data serialization,
etc.

6.3.2 Connecting to Databases

By default, Active Record uses the db application component as the DB
connection to access and manipulate the database data. As explained in
Database Access Objects, you can configure the db component in the applic-
ation configuration like shown below,

return [
'components' => [
'db' => [
'class' => 'yii\db\Connection',
'dsn' => 'mysql:host=localhost;dbname=testdb’,
'username' => 'demo',
'password' => 'demo',
1,
1,
1;

If you want to use a different database connection other than the db com-
ponent, you should override the getDb() method:

class Customer extends ActiveRecord

{
/7
public static function getDb()
{
// use the "db2" application component
return \Yii::$app->db2;
}
}

6.3.3 Querying Data

After declaring an Active Record class, you can use it to query data from
the corresponding database table. The process usually takes the following
three steps:

1. Create a new query object by calling the yii\db\ActiveRecord: :
find () method;

2. Build the query object by calling query building methods;

3. Call a query method to retrieve data in terms of Active Record in-
stances.

286 CHAPTER 6. WORKING WITH DATABASES

As you can see, this is very similar to the procedure with query builder.
The only difference is that instead of using the new operator to create a
query object, you call yii\db\ActiveRecord: :find () to return a new query
object which is of class yii\db\ActiveQuery.

Below are some examples showing how to use Active Query to query
data:

// return a single customer whose ID is 123
// SELECT * FROM “customer’ WHERE “id°~ = 123
$customer = Customer::find()

->where(['id' => 123])

->one();

// return all active customers and order them by their IDs
// SELECT * FROM “customer’ WHERE ‘status” = 1 ORDER BY “id°
$customers = Customer::find()

->where(['status' => Customer::STATUS_ACTIVE])

->orderBy('id')

->all();

// return the number of active customers
// SELECT COUNT(*) FROM “customer’ WHERE “status’ = 1
$count = Customer::find()
->where(['status' => Customer::STATUS_ACTIVE])
->count () ;

// return all customers in an array indezed by customer IDs
// SELECT * FROM "customer’
$customers = Customer::find()

->indexBy ('id"')

->all(Q);

In the above, $customer is a Customer object while $customers is an array of
Customer objects. They are all populated with the data retrieved from the
customer table.

Info: Because yii\db\ActiveQuery extends from yii\db\Query,
you can use all query building methods and query methods as
described in the Section Query Builder.

Because it is a common task to query by primary key values or a set of
column values, Yii provides two shortcut methods for this purpose:
e yiil\db\ActiveRecord::findOne(): returns a single Active Record
instance populated with the first row of the query result.
e yiildb\ActiveRecord: :findA11(): returns an array of Active Record
instances populated with all query result.
Both methods can take one of the following parameter formats:
e a scalar value: the value is treated as the desired primary key value to
be looked for. Yii will determine automatically which column is the
primary key column by reading database schema information.

6.3. ACTIVE RECORD

287

e an array of scalar values: the array is treated as the desired primary

key values to be looked for.

e an associative array: the keys are column names and the values are
the corresponding desired column values to be looked for. Please refer

to Hash Format for more details.

The following code shows how these methods can be used:

// returns a single customer whose ID is 123
// SELECT * FROM “customer’ WHERE “4id° = 123
$customer = Customer::findOne(123);

// returns customers whose ID 4s 100, 101, 123 or 12/

// SELECT * FROM “customer’ WHERE “4id° IN (100, 101, 123, 124)

$customers = Customer::findAl1([100, 101, 123, 124]);

// returns an active customer whose ID is 123

// SELECT * FROM “customer’ WHERE “id°~ = 123 AND “status’

$customer = Customer: :findOne([

'id' => 123,

'status' => Customer::STATUS_ACTIVE,
IDH

// returns all inactive customers
// SELECT * FROM “customer’ WHERE “status” = 0
$customers = Customer::findAl1([
'status' => Customer::STATUS_INACTIVE,
IDH

Warning: If you need to pass user input to these methods, make
sure the input value is scalar or in case of array condition, make
sure the array structure can not be changed from the outside:

// yii\web\Controller ensures that $id is scalar
public function actionView($id)
{
$model = Post::findOne($id);
/..
}

// explicitly specifying the column to search, passing a scalar or
array here will always result in finding a single record
$model = Post::findOne(['id' => Yii::$app->request->get('id')]);

// do NOT use the following code! it is possible to inject an array

condition to filter by arbitrary column values!

$model = Post::findOne(Yii::$app->request->get('id'));

Note: Neither yii\db\ActiveRecord: :findOne() nor yii\db
\ActiveQuery::one() will add LIMIT 1 to the generated SQL
statement. If your query may return many rows of data, you
should call 1imit(1) explicitly to improve the performance, e.g.,

Customer: :find()->1imit (1)->one().

288 CHAPTER 6. WORKING WITH DATABASES

Besides using query building methods, you can also write raw SQLs to query
data and populate the results into Active Record objects. You can do so by
calling the yii\db\ActiveRecord: :findBySql () method:

// returns all inactive customers

$sql = 'SELECT * FROM customer WHERE status=:status';
$customers = Customer::findBySql($sql, [':status' =>
Customer: : STATUS_INACTIVE])->all();

Do not call extra query building methods after calling £indBySql() as they
will be ignored.

6.3.4 Accessing Data

As aforementioned, the data brought back from the database are populated
into Active Record instances, and each row of the query result corresponds
to a single Active Record instance. You can access the column values by
accessing the attributes of the Active Record instances, for example,

// "id" and "email" are the names of columns in the "customer" table
$customer = Customer: :findOne(123);

$id = $customer->id;

$email = $customer->email;

Note: The Active Record attributes are named after the associ-
ated table columns in a case-sensitive manner. Yii automatically
defines an attribute in Active Record for every column of the as-
sociated table. You should NOT redeclare any of the attributes.

Because Active Record attributes are named after table columns, you may
find you are writing PHP code like $customer->first_name, which uses under-
scores to separate words in attribute names if your table columns are named
in this way. If you are concerned about code style consistency, you should
rename your table columns accordingly (to use camelCase, for example).

Data Transformation

It often happens that the data being entered and /or displayed are in a format
which is different from the one used in storing the data in a database. For
example, in the database you are storing customers’ birthdays as UNIX
timestamps (which is not a good design, though), while in most cases you
would like to manipulate birthdays as strings in the format of 'yyyy/mM/DpD'.
To achieve this goal, you can define data transformation methods in the
customer Active Record class like the following:

class Customer extends ActiveRecord
{
// ...

6.3. ACTIVE RECORD 289

public function getBirthdayText ()

{
return date('Y/m/d', $this->birthday);
}
public function setBirthdayText ($value)
{
$this->birthday = strtotime($value);
}

}

Now in your PHP code, instead of accessing $customer->birthday, you would
access $customer->birthdayText, which will allow you to input and display
customer birthdays in the format of 'yyyy/mM/pD'.

Tip: The above example shows a generic way of transforming
data in different formats. If you are working with date values,
you may use DateValidator and yii\jui\DatePicker, which is
easier to use and more powerful.

Retrieving Data in Arrays

While retrieving data in terms of Active Record objects is convenient and
flexible, it is not always desirable when you have to bring back a large amount
of data due to the big memory footprint. In this case, you can retrieve data
using PHP arrays by calling asArray() before executing a query method:

// return all customers
// each customer is returned as an associative array
$customers = Customer::find()

->asArray ()

->all();

Note: While this method saves memory and improves perform-
ance, it is closer to the lower DB abstraction layer and you will
lose most of the Active Record features. A very important dis-
tinction lies in the data type of the column values. When you
return data in Active Record instances, column values will be
automatically typecast according to the actual column types; on
the other hand when you return data in arrays, column values
will be strings (since they are the result of PDO without any
processing), regardless their actual column types.

Retrieving Data in Batches

In Query Builder, we have explained that you may use batch query to min-
imize your memory usage when querying a large amount of data from the
database. You may use the same technique in Active Record. For example,

290 CHAPTER 6. WORKING WITH DATABASES

// fetch 10 customers at a time
foreach (Customer::find()->batch(10) as $customers) {
// $customers is an array of 10 or fewer Customer objects

}

// fetch 10 customers at a time and iterate them ome by one
foreach (Customer::find()->each(10) as $customer) {
// $customer is a Customer object

}

// batch query with eager loading
foreach (Customer::find()->with('orders')->each() as $customer) {
// $customer is a Customer object with the 'orders' relation populated

}

6.3.5 Saving Data

Using Active Record, you can easily save data to the database by taking the
following steps:

1. Prepare an Active Record instance
2. Assign new values to Active Record attributes

3. Call yii\db\ActiveRecord: :save() to save the data into database.

For example,

// insert a new row of data

$customer = new Customer();
$customer->name = 'James';
$customer->email = 'james@example.com';
$customer->save();

// update an existing row of data
$customer = Customer::findOne(123);
$customer->email = 'james@newexample.com';
$customer->save();

The save() method can either insert or update a row of data, depending
on the state of the Active Record instance. If the instance is newly created
via the new operator, calling save () will cause insertion of a new row; If the
instance is the result of a query method, calling save () will update the row
associated with the instance.

You can differentiate the two states of an Active Record instance by
checking its isNewRecord property value. This property is also used by
save () internally as follows:

public function save($runValidation = true, $attributeNames = null)
{
if ($this->getIsNewRecord()) {

6.3. ACTIVE RECORD 291

return $this->insert($runValidation, $attributeNames);
} else {
return $this->update($runValidation, $attributeNames) !== false;

}

Tip: You can call insert() or update() directly to insert or
update a row.

Data Validation

Because yii\db\ActiveRecord extends from yii\base\Model, it shares the
same data validation feature. You can declare validation rules by overriding
the rules () method and perform data validation by calling the validate ()
method.

When you call save (), by default it will call validate() automatically.
Only when the validation passes, will it actually save the data; otherwise it
will simply return false, and you can check the errors property to retrieve
the validation error messages.

Tip: If you are certain that your data do not need valida-
tion (e.g., the data comes from trustable sources), you can call
save(false) to skip the validation.

Massive Assignment

Like normal models, Active Record instances also enjoy the massive assign-
ment feature. Using this feature, you can assign values to multiple attributes
of an Active Record instance in a single PHP statement, like shown below.
Do remember that only safe attributes can be massively assigned, though.

$values = [
'name' => 'James',
'email' => 'james@example.com',

1;

$customer = new Customer();
$customer->attributes = $values;
$customer->save();

Updating Counters

It is a common task to increment or decrement a column in a database table.
We call these columns “counter columns”. You can use updateCounters()
to update one or multiple counter columns. For example,

292 CHAPTER 6. WORKING WITH DATABASES

$post = Post::findOne(100);

// UPDATE ‘post’ SET “wiew_count” = “wiew_count + 1 WHERE “id"