
The Definitive Guide to Yii 1.0

Qiang Xue and Xiang Wei Zhuo

Copyright 2008-2009. All Rights Reserved.

Contents

Contents i

License ix

1 Getting Started 1

1.1 The Definitive Guide to Yii . 1

1.2 New Features . 1

1.2.1 Version 1.0.10 . 1

1.2.2 Version 1.0.8 . 1

1.2.3 Version 1.0.7 . 2

1.2.4 Version 1.0.6 . 2

1.2.5 Version 1.0.5 . 2

1.3 What is Yii . 3

1.3.1 Requirements . 3

1.3.2 What is Yii Best for? . 3

1.3.3 How is Yii Compared with Other Frameworks? 3

1.4 Installation . 4

1.4.1 Requirements . 4

1.5 Creating First Yii Application . 4

1.5.1 Connecting to Database . 9

1.5.2 Implementing CRUD Operations . 10

ii Contents

2 Fundamentals 15

2.1 Model-View-Controller (MVC) . 15

2.1.1 A Typical Workflow . 16

2.2 Entry Script . 17

2.2.1 Debug Mode . 17

2.3 Application . 18

2.3.1 Application Configuration . 18

2.3.2 Application Base Directory . 19

2.3.3 Application Component . 19

2.3.4 Core Application Components . 20

2.3.5 Application Lifecycles . 21

2.4 Controller . 22

2.4.1 Route . 22

2.4.2 Controller Instantiation . 23

2.4.3 Action . 23

2.4.4 Filter . 24

2.5 Model . 26

2.6 View . 27

2.6.1 Layout . 27

2.6.2 Widget . 28

2.6.3 System View . 29

2.7 Component . 29

2.7.1 Component Property . 29

2.7.2 Component Event . 30

Contents iii

2.7.3 Component Behavior . 31

2.8 Module . 32

2.8.1 Creating Module . 33

2.8.2 Using Module . 34

2.8.3 Nested Module . 35

2.9 Path Alias and Namespace . 35

2.10 Conventions . 36

2.10.1 URL . 37

2.10.2 Code . 37

2.10.3 Configuration . 37

2.10.4 File . 38

2.10.5 Directory . 38

2.11 Development Workflow . 39

3 Working with Forms 41

3.1 Working with Form . 41

3.2 Creating Model . 41

3.2.1 Defining Model Class . 42

3.2.2 Declaring Validation Rules . 42

3.2.3 Securing Attribute Assignments . 45

3.2.4 Triggering Validation . 47

3.2.5 Retrieving Validation Errors . 48

3.2.6 Attribute Labels . 48

3.3 Creating Action . 48

3.4 Creating Form . 50

iv Contents

3.5 Collecting Tabular Input . 51

4 Working with Databases 55

4.1 Working with Database . 55

4.2 Data Access Objects (DAO) . 55

4.2.1 Establishing Database Connection 56

4.2.2 Executing SQL Statements . 57

4.2.3 Fetching Query Results . 58

4.2.4 Using Transactions . 58

4.2.5 Binding Parameters . 59

4.2.6 Binding Columns . 60

4.3 Active Record . 60

4.3.1 Establishing DB Connection . 61

4.3.2 Defining AR Class . 62

4.3.3 Creating Record . 63

4.3.4 Reading Record . 64

4.3.5 Updating Record . 67

4.3.6 Deleting Record . 67

4.3.7 Data Validation . 68

4.3.8 Comparing Records . 69

4.3.9 Customization . 69

4.3.10 Using Transaction with AR . 69

4.3.11 Named Scopes . 70

4.4 Relational Active Record . 72

4.4.1 Declaring Relationship . 74

Contents v

4.4.2 Performing Relational Query . 76

4.4.3 Relational Query Options . 78

4.4.4 Dynamic Relational Query Options 80

4.4.5 Statistical Query . 80

4.4.6 Relational Query with Named Scopes 82

5 Caching 85

5.1 Caching . 85

5.2 Data Caching . 87

5.2.1 Cache Dependency . 88

5.3 Fragment Caching . 89

5.3.1 Caching Options . 89

5.3.2 Nested Caching . 91

5.4 Page Caching . 92

5.5 Dynamic Content . 93

6 Extending Yii 95

6.1 Overview . 95

6.2 Using Extensions . 96

6.2.1 Application Component . 96

6.2.2 Behavior . 97

6.2.3 Widget . 98

6.2.4 Action . 98

6.2.5 Filter . 99

6.2.6 Controller . 99

vi Contents

6.2.7 Validator . 100

6.2.8 Console Command . 100

6.2.9 Module . 101

6.2.10 Generic Component . 101

6.3 Creating Extensions . 101

6.3.1 Application Component . 102

6.3.2 Behavior . 102

6.3.3 Widget . 103

6.3.4 Action . 104

6.3.5 Filter . 104

6.3.6 Controller . 105

6.3.7 Validator . 105

6.3.8 Console Command . 106

6.3.9 Module . 106

6.3.10 Generic Component . 106

6.4 Using 3rd-Party Libraries . 106

7 Special Topics 109

7.1 URL Management . 109

7.1.1 Creating URLs . 109

7.1.2 User-friendly URLs . 110

7.2 Authentication and Authorization . 114

7.2.1 Defining Identity Class . 114

7.2.2 Login and Logout . 116

7.2.3 Access Control Filter . 116

Contents vii

7.2.4 Role-Based Access Control . 120

7.3 Theming . 125

7.4 Logging . 127

7.4.1 Message Logging . 127

7.4.2 Message Routing . 128

7.4.3 Performance Profiling . 131

7.5 Error Handling . 132

7.5.1 Raising Exceptions . 132

7.5.2 Displaying Errors . 133

7.5.3 Message Logging . 135

7.6 Web Service . 135

7.6.1 Defining Service Provider . 135

7.6.2 Declaring Web Service Action . 136

7.6.3 Consuming Web Service . 137

7.6.4 Data Types . 137

7.6.5 Class Mapping . 138

7.6.6 Intercepting Remote Method Invocation 139

7.7 Internationalization . 139

7.7.1 Locale and Language . 140

7.7.2 Translation . 140

7.7.3 Date and Time Formatting . 144

7.7.4 Number Formatting . 144

7.8 Using Alternative Template Syntax . 145

7.8.1 Using CPradoViewRenderer . 145

viii Contents

7.9 Console Applications . 148

7.9.1 Using the yiic Tool . 149

7.10 Security . 150

7.10.1 Cross-site Scripting Prevention . 150

7.10.2 Cross-site Request Forgery Prevention 150

7.10.3 Cookie Attack Prevention . 151

7.11 Performance Tuning . 152

7.11.1 Enabling APC Extension . 152

7.11.2 Disabling Debug Mode . 153

7.11.3 Using yiilite.php . 153

7.11.4 Using Caching Techniques . 153

7.11.5 Database Optimization . 154

7.11.6 Minimizing Script Files . 154

License of Yii

The Yii framework is free software. It is released under the terms of the following BSD
License.

Copyright c©2008-2009 by Yii Software LLC. All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are
permitted provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of
conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list of
conditions and the following disclaimer in the documentation and/or other materials
provided with the distribution.

3. Neither the name of Yii Software LLC nor the names of its contributors may be
used to endorse or promote products derived from this software without specific
prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS ”AS

IS” AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE

IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PUR-

POSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBU-

TORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR

CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUB-

STITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUP-

TION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,

STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY

WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF

SUCH DAMAGE.

x Contents

Chapter 1

Getting Started

1.1 The Definitive Guide to Yii

This tutorial is released under the Terms of Yii Documentation.

All Rights Reserved.

2008-2009 copy; Yii Software LLC.

1.2 New Features

This page summarizes the main new features introduced in each Yii release.

1.2.1 Version 1.0.10

• Enhanced support for using CPhpMessageSource to manage module messages

– Message Translation

• Added support for attaching anonymous functions as event handlers

– Component Event

1.2.2 Version 1.0.8

• Added support for retrieving multiple cached values at one time

– Data Caching

• Introduced a new default root path alias ext which points to the directory containing
all third-party extensions.

– Using Extensions

http://www.yiiframework.com/doc/terms/

2 1. Getting Started

1.2.3 Version 1.0.7

• Added support for displaying call stack information in trace messages

– Logging Context Information

• Added index option to AR relations so that related objects can be indexed using the
values of a specific column

– Relational Query Options

1.2.4 Version 1.0.6

• Added support for using named scope with update and delete methods:

– Named Scopes

• Added support for using named scope in the with option of relational rules:

– Relational Query with Named Scopes

• Added support for profiling SQL executions

– Profiling SQL Executions

• Added support for logging additional context information

– Logging Context Information

• Added support for customizing a single URL rule by setting its urlFormat and cas-
eSensitive options:

– User-friendly URLs

• Added support for using a controller action to display application errors:

– Handling Errors Using an Action

1.2.5 Version 1.0.5

• Enhanced active record by supporting named scopes. See:

– Named Scopes

– Default Named Scope

1.3 What is Yii 3

– Relational Query with Named Scopes

• Enhanced active record by supporting lazy loading with dynamic query options. See:

– Dynamic Relational Query Options

• Enhanced CUrlManager to support parameterizing the route part in URL rules. See:

– Parameterizing Routes in URL Rules

1.3 What is Yii

Yii is a high-performance component-based PHP framework for developing large-scale Web
applications. It enables maximum reusability in Web programming and can significantly
accelerate the development process. The name Yii (pronounced as Yee or [ji:]) stands
for easy, efficient and extensible.

1.3.1 Requirements

To run an Yii-powered Web application, you need a Web server supporting PHP 5.1.0 or
higher.

For developers who want to use Yii, understanding object-oriented programming (OOP)
is very helpful, because Yii is a pure OOP framework.

1.3.2 What is Yii Best for?

Yii is a generic Web programming framework that can be used for developing virtually all
sorts of Web applications. Because it is light-weighted and equipped with sophisticated
caching solutions, it is especially suitable for developing high-traffic applications, such as
portals, forums, content management systems (CMS), e-commerce systems, etc.

1.3.3 How is Yii Compared with Other Frameworks?

Like most PHP frameworks, Yii is an MVC framework.

Yii excels over other PHP frameworks in that it is efficient, feature-rich and clearly-
documented. Yii is carefully designed from the beginning to fit for serious Web application
development. It is neither a byproduct of some project nor a conglomerate of third-party
work. It is the result of the authors’ rich experience of Web application development and
the investigation and reflection of the most popular Web programming frameworks and
applications.

http://yiiframework.com/doc/api/CUrlManager

4 1. Getting Started

1.4 Installation

Installation of Yii mainly involves the following two steps:

1. Download Yii Framework from yiiframework.com.

2. Unpack the Yii release file to a Web-accessible directory.

Tip: Yii does not need to be installed under a Web-accessible directory. An Yii
application has one entry script which is usually the only file that needs to be
exposed to Web users. Other PHP scripts, including those from Yii, should be
protected from Web access since they may be exploited for hacking.

1.4.1 Requirements

After installing Yii, you may want to verify that your server satisfies all the requirements
of using Yii. You can do so by accessing the requirement checker script at the following
URL in a Web browser:

http://hostname/path/to/yii/requirements/index.php

The minimum requirement by Yii is that your Web server supports PHP 5.1.0 or above.
Yii has been tested with Apache HTTP server on Windows and Linux operating systems.
It may also run on other Web servers and platforms provided PHP 5 is supported.

1.5 Creating First Yii Application

To get an initial experience with Yii, we describe in this section how to create our first
Yii application. We will use the powerful yiic tool which can be used to automate code
creation for certain tasks. For convenience, we assume that YiiRoot is the directory where
Yii is installed, and WebRoot is the document root of our Web server.

Run yiic on the command line as follows:

% YiiRoot/framework/yiic webapp WebRoot/testdrive

http://www.yiiframework.com/
http://httpd.apache.org/

1.5 Creating First Yii Application 5

Note: When running yiic on Mac OS, Linux or Unix, you may need to change the
permission of the yiic file so that it is executable. Alternatively, you may run the
tool as follows,

% cd WebRoot/testdrive

% php YiiRoot/framework/yiic.php webapp WebRoot/testdrive

This will create a skeleton Yii application under the directory WebRoot/testdrive. The
application has a directory structure that is is needed by most Yii applications.

Without writing a single line of code, we can test drive our first Yii application by accessing
the following URL in a Web browser:

http://hostname/testdrive/index.php

As we can see, the application has three pages: the homepage, the contact page and
the login page. The homepage shows some information about the application as well as
the user login status, the contact page displays a contact form that users can fill in to
submit their inquiries, and the login page allows users to be authenticated before accessing
privileged contents. See the following screenshots for more details.

The following diagram shows the directory structure of our application. Please see Con-
ventions for detailed explanation about this structure.

testdrive/

index.php Web application entry script file

assets/ containing published resource files

css/ containing CSS files

images/ containing image files

themes/ containing application themes

protected/ containing protected application files

yiic yiic command line script

yiic.bat yiic command line script for Windows

commands/ containing customized ’yiic’ commands

shell/ containing customized ’yiic shell’ commands

components/ containing reusable user components

MainMenu.php the ’MainMenu’ widget class

Identity.php the ’Identity’ class used for authentication

views/ containing view files for widgets

mainMenu.php the view file for ’MainMenu’ widget

config/ containing configuration files

console.php the console application configuration

main.php the Web application configuration

6 1. Getting Started

Figure 1.1: Home page

1.5 Creating First Yii Application 7

Figure 1.2: Contact page

8 1. Getting Started

Figure 1.3: Contact page with input errors

Figure 1.4: Contact page with success

1.5 Creating First Yii Application 9

Figure 1.5: Login page

controllers/ containing controller class files

SiteController.php the default controller class

extensions/ containing third-party extensions

messages/ containing translated messages

models/ containing model class files

LoginForm.php the form model for ’login’ action

ContactForm.php the form model for ’contact’ action

runtime/ containing temporarily generated files

views/ containing controller view and layout files

layouts/ containing layout view files

main.php the default layout for all views

site/ containing view files for the ’site’ controller

contact.php the view for ’contact’ action

index.php the view for ’index’ action

login.php the view for ’login’ action

system/ containing system view files

1.5.1 Connecting to Database

Most Web applications are backed by databases. Our test-drive application is not an
exception. To use a database, we first need to tell the application how to connect to it.
This is done by changing the application configuration file WebRoot/testdrive/protected/

config/main.php, as shown below:

return array(

......

’components’=>array(

......

’db’=>array(

10 1. Getting Started

’connectionString’=>’sqlite:protected/data/source.db’,

),

),

......

);

In the above, we add a db entry to components, which instructs the application to connect
to the SQLite database WebRoot/testdrive/protected/data/source.db when needed.

Note: To use Yii’s database feature, we need to enable PHP PDO extension and
the driver-specific PDO extension. For the test-drive application, we would need
the php pdo and php pdo sqlite extensions to be turned on.

To this end, we need to prepare a SQLite database so that the above configuration can
be effective. Using some SQLite admin tool, we can create a database with the following
schema:

CREATE TABLE User (

id INTEGER NOT NULL PRIMARY KEY AUTOINCREMENT,

username VARCHAR(128) NOT NULL,

password VARCHAR(128) NOT NULL,

email VARCHAR(128) NOT NULL

);

Note: If you are using MySQL database, you should replace AUTOINCREMENT with
AUTO INCREMENT in the above SQL.

For simplicity, we only create a single User table in our database. The SQLite database
file is saved as WebRoot/testdrive/protected/data/source.db. Note that both the file and
the containing directory must be made writable by the Web server process, as required by
SQLite.

1.5.2 Implementing CRUD Operations

Now is the fun part. We would like to implement the CRUD (create, read, update and
delete) operations for the User table we just created. This is also commonly needed in
practical applications.

Instead of taking trouble to write actual code, we would use the powerful yiic tool again
to automatically generate the code for us. This process is also known as scaffolding. Open
a command line window, and execute the commands listed as follows,

1.5 Creating First Yii Application 11

% cd WebRoot/testdrive

% protected/yiic shell

Yii Interactive Tool v1.0

Please type ’help’ for help. Type ’exit’ to quit.

>> model User

generate User.php

The ’User’ class has been successfully created in the following file:

D:\wwwroot\testdrive\protected\models\User.php

If you have a ’db’ database connection, you can test it now with:

$model=User::model()->find();

print_r($model);

>> crud User

generate UserController.php

mkdir D:/wwwroot/testdrive/protected/views/user

generate create.php

generate update.php

generate list.php

generate show.php

generate admin.php

generate _form.php

Crud ’user’ has been successfully created. You may access it via:

http://hostname/path/to/index.php?r=user

In the above, we use the yiic shell command to interact with our skeleton application.
At the prompt, we execute two sub-commands: model User and crud User. The former
generates a model class for the User table, while the latter reads the User model and
generates the code implementing the CRUD operations.

Note: You may encounter errors like ”...could not find driver”, even though the
requirement checker shows you have already enabled PDO and the corresponding
PDO driver. If this happens, you may try to run the yiic tool as follows,

% php -c path/to/php.ini protected/yiic.php shell

where path/to/php.ini represents the correct PHP ini file.

Let’s enjoy our work by browsing the following URL:

http://hostname/testdrive/index.php?r=user

12 1. Getting Started

This will display a list of user entries in the User table. Since our table is empty, nothing
will appear at the moment.

Click the New User link on the page. We will be brought to the login page if we have not
logged in before. After logged in, we are shown with an input form that allows us to add
a new user entry. Complete the form and click on the Create button. If there is any input
error, a nice error prompt will be shown which prevents us from saving the input. Back
to the user list, we should see the newly added user appearing in the list.

Repeat the above steps to add more users. Notice that user list page will automatically
paginate the user entries if there are too many to be displayed in one page.

If we login as an administrator using admin/admin, we can view the user admin page with
the following URL:

http://hostname/testdrive/index.php?r=user/admin

This will show us a nice table of user entries. We can click on the table header cells to
sort the corresponding columns. And like the user list page, the admin page also performs
pagination when there are too many user entries to be displayed in one page.

All these nice features come without requiring us to write a single line of code!

Figure 1.6: User admin page

1.5 Creating First Yii Application 13

Figure 1.7: Create new user page

14 1. Getting Started

Chapter 2

Fundamentals

2.1 Model-View-Controller (MVC)

Yii implements the model-view-controller (MVC) design pattern which is widely adopted in
Web programming. MVC aims to separate business logic from user interface considerations
so that developers can more easily change each part without affecting the other. In MVC,
the model represents the information (the data) and the business rules; the view contains
elements of the user interface such as text, form inputs; and the controller manages the
communication between the model and the view.

Besides MVC, Yii also introduces a front-controller, called application, which represents
the execution context of request processing. Application resolves the user request and
dispatches it to an appropriate controller for further handling.

The following diagram shows the static structure of an Yii application:

Figure 2.1: Static structure of Yii application

16 2. Fundamentals

2.1.1 A Typical Workflow

The following diagram shows a typical workflow of an Yii application when it is handling
a user request:

Figure 2.2: A typical workflow of Yii application

1. A user makes a request with the URL http://www.example.com/index.php?r=post/

show&id=1 and the Web server handles the request by executing the bootstrap script
index.php.

2. The bootstrap script creates an application instance and runs it.

3. The application obtains the detailed user request information from an application
component named request.

4. The application determines the requested controller and action with the help of an
application component named urlManager. For this example, the controller is post

which refers to the PostController class; and the action is show whose actual meaning
is determined by the controller.

5. The application creates an instance of the requested controller to further handle the
user request. The controller determines that the action show refers to a method

2.2 Entry Script 17

named actionShow in the controller class. It then creates and executes filters (e.g.
access control, benchmarking) associated with this action. The action is executed if
it is allowed by the filters.

6. The action reads a Post model whose ID is 1 from the database.

7. The action renders a view named show with the Post model.

8. The view reads and displays the attributes of the Post model.

9. The view executes some widgets.

10. The view rendering result is embedded in a layout.

11. The action completes the view rendering and displays the result to the user.

2.2 Entry Script

Entry script is the bootstrap PHP script that handles user requests initially. It is the only
PHP script that end users can directly request to execute.

In most cases, entry script of an Yii application contains the code that is as simple as
follows,

// remove the following line when in production mode

defined(’YII DEBUG’) or define(’YII DEBUG’,true);

// include Yii bootstrap file

require once(’path/to/yii/framework/yii.php’);

// create application instance and run

$configFile=’path/to/config/file.php’;

Yii::createWebApplication($configFile)->run();

The script first includes the Yii framework bootstrap file yii.php. It then creates a Web
application instance with the specified configuration and runs it.

2.2.1 Debug Mode

An Yii application can run in either debug or production mode according to the constant
value YII DEBUG. By default, this constant value is defined as false, meaning production
mode. To run in debug mode, define this constant as true before including the yii.php file.
Running application in debug mode is less efficient because it keeps many internal logs.
On the other hand, debug mode is also more helpful during development stage because it
provides richer debugging information when error occurs.

18 2. Fundamentals

2.3 Application

Application represents the execution context of request processing. Its main task is to
resolve the user request and dispatch it to an appropriate controller for further processing.
It also serves as the central place for keeping application-level configurations. For this
reason, application is also called front-controller.

Application is created as a singleton by the entry script. The application singleton can be
accessed at any place via Yii::app().

2.3.1 Application Configuration

By default, application is an instance of CWebApplication. To customize it, we normally
provide a configuration file (or array) to initialize its property values when the application
instance is being created. An alternative way of customizing application is to extend
CWebApplication.

The configuration is an array of key-value pairs. Each key represents the name of a
property of the application instance, and each value the corresponding property’s initial
value. For example, the following configuration configures the name and defaultController
properties of the application.

array(

’name’=>’Yii Framework’,

’defaultController’=>’site’,

)

We usually store the configuration in a separate PHP script (e.g. protected/config/main.

php). Inside the script, we return the configuration array as follows,

return array(...);

To apply the configuration, we pass the configuration file name as a parameter to the
application’s constructor, or to Yii::createWebApplication() like the following, which is
usually done in the entry script:

$app=Yii::createWebApplication($configFile);

http://yiiframework.com/doc/api/YiiBase#app
http://yiiframework.com/doc/api/CWebApplication
http://yiiframework.com/doc/api/CWebApplication
http://yiiframework.com/doc/api/CApplication#name
http://yiiframework.com/doc/api/CWebApplication#defaultController
http://yiiframework.com/doc/api/Yii#createWebApplication

2.3 Application 19

Tip: If the application configuration is very complex, we can split it into several files,
each returning a portion of the configuration array. Then, in the main configuration
file, we call PHP include() to include the rest configuration files and merge them
into a complete configuration array.

2.3.2 Application Base Directory

Application base directory refers to the root directory that contains all security-sensitive
PHP scripts and data. By default, it is a subdirectory named protected that is located
under the directory containing the entry script. It can be customized via setting the
basePath property in the .

Contents under the application base directory should be protected from being accessed by
Web users. With Apache HTTP server, this can be done easily by placing a .htaccess

file under the base directory. The content of the .htaccess file is as follows,

deny from all

2.3.3 Application Component

Functionalities of application can be easily customized and enriched with its flexible com-
ponent architecture. Application manages a set of application components, each imple-
menting specific features. For example, application resolves a user request with the help
of CUrlManager and CHttpRequest components.

By configuring the components property of application, we can customize the class and
property values of any application component used in an application. For example, we
can configure CMemCache component so that it can use multiple memcache servers for
caching,

array(

......

’components’=>array(

......

’cache’=>array(

’class’=>’CMemCache’,

’servers’=>array(

array(’host’=>’server1’, ’port’=>11211, ’weight’=>60),

array(’host’=>’server2’, ’port’=>11211, ’weight’=>40),

),

),

),

)

http://yiiframework.com/doc/api/CWebApplication#basePath
http://httpd.apache.org/
http://yiiframework.com/doc/api/CUrlManager
http://yiiframework.com/doc/api/CHttpRequest
http://yiiframework.com/doc/api/CApplication#components
http://yiiframework.com/doc/api/CMemCache

20 2. Fundamentals

In the above, we add the cache element to the components array. The cache element states
that the class of the component is CMemCache and its servers property should be initialized
as such.

To access an application component, use Yii::app()->ComponentID, where ComponentID

refers to the ID of the component (e.g. Yii::app()->cache).

An application component may be disabled by setting enabled to be false in its configu-
ration. Null is returned when we access a disabled component.

Tip: By default, application components are created on demand. This means an
application component may not be created at all if it is not accessed during a
user request. As a result, the overall performance may not be degraded even if
an application is configured with many components. Some application components
(e.g. CLogRouter) may need to be created no matter they are accessed or not. To
do so, list their IDs in the preload property of the application.

2.3.4 Core Application Components

Yii predefines a set of core application components to provide features common among
Web applications. For example, the request component is used to resolve user requests
and provide information such as URL, cookies. By configuring the properties of these core
components, we can change the default behaviors of Yii in nearly every aspect.

Below we list the core components that are pre-declared by CWebApplication.

• assetManager: CAssetManager - manages the publishing of private asset files.

• authManager: CAuthManager - manages role-based access control (RBAC).

• cache: CCache - provides data caching functionality. Note, you must specify the
actual class (e.g. CMemCache, CDbCache). Otherwise, null will be returned when
you access this component.

• clientScript: CClientScript - manages client scripts (javascripts and CSS).

• coreMessages: CPhpMessageSource - provides translated core messages used by Yii
framework.

• db: CDbConnection - provides the database connection. Note, you must configure
its connectionString property in order to use this component.

• errorHandler: CErrorHandler - handles uncaught PHP errors and exceptions.

http://yiiframework.com/doc/api/CLogRouter
http://yiiframework.com/doc/api/CApplication#preload
http://yiiframework.com/doc/api/CWebApplication#request
http://yiiframework.com/doc/api/CWebApplication
http://yiiframework.com/doc/api/CWebApplication#assetManager
http://yiiframework.com/doc/api/CAssetManager
http://yiiframework.com/doc/api/CWebApplication#authManager
http://yiiframework.com/doc/api/CAuthManager
http://yiiframework.com/doc/api/CApplication#cache
http://yiiframework.com/doc/api/CCache
http://yiiframework.com/doc/api/CMemCache
http://yiiframework.com/doc/api/CDbCache
http://yiiframework.com/doc/api/CWebApplication#clientScript
http://yiiframework.com/doc/api/CClientScript
http://yiiframework.com/doc/api/CApplication#coreMessages
http://yiiframework.com/doc/api/CPhpMessageSource
http://yiiframework.com/doc/api/CApplication#db
http://yiiframework.com/doc/api/CDbConnection
http://yiiframework.com/doc/api/CDbConnection#connectionString
http://yiiframework.com/doc/api/CApplication#errorHandler
http://yiiframework.com/doc/api/CErrorHandler

2.3 Application 21

• messages: CPhpMessageSource - provides translated messaged used by Yii applica-
tion.

• request: CHttpRequest - provides information related with user requests.

• securityManager: CSecurityManager - provides security-related services, such as
hashing, encryption.

• session: CHttpSession - provides session-related functionalities.

• statePersister: CStatePersister - provides global state persistence method.

• urlManager: CUrlManager - provides URL parsing and creation functionality.

• user: CWebUser - represents the identity information of the current user.

• themeManager: CThemeManager - manages themes.

2.3.5 Application Lifecycles

When handling a user request, an application will undergo the following lifecycles:

1. Pre-initializes the application with CApplication::preinit();

2. Set up class autoloader and error handling;

3. Register core application components;

4. Load application configuration;

5. Initialize the application with CApplication::init()

• Register application behaviors;

• Load static application components;

6. Raise onBeginRequest event;

7. Process the user request:

• Resolve the user request;

• Create controller;

• Run controller;

7.Raise onEndRequest event;

http://yiiframework.com/doc/api/CApplication#messages
http://yiiframework.com/doc/api/CPhpMessageSource
http://yiiframework.com/doc/api/CWebApplication#request
http://yiiframework.com/doc/api/CHttpRequest
http://yiiframework.com/doc/api/CApplication#securityManager
http://yiiframework.com/doc/api/CSecurityManager
http://yiiframework.com/doc/api/CWebApplication#session
http://yiiframework.com/doc/api/CHttpSession
http://yiiframework.com/doc/api/CApplication#statePersister
http://yiiframework.com/doc/api/CStatePersister
http://yiiframework.com/doc/api/CWebApplication#urlManager
http://yiiframework.com/doc/api/CUrlManager
http://yiiframework.com/doc/api/CWebApplication#user
http://yiiframework.com/doc/api/CWebUser
http://yiiframework.com/doc/api/CWebApplication#themeManager
http://yiiframework.com/doc/api/CThemeManager
http://yiiframework.com/doc/api/CApplication#preinit
http://yiiframework.com/doc/api/CApplication#init
http://yiiframework.com/doc/api/CApplication#onBeginRequest
http://yiiframework.com/doc/api/CApplication#onEndRequest

22 2. Fundamentals

2.4 Controller

A controller is an instance of CController or its child class. It is created by application
when the user requests for it. When a controller runs, it performs the requested action
which usually brings in the needed models and renders an appropriate view. An action,
at its simplest form, is just a controller class method whose name starts with action.

A controller has a default action. When the user request does not specify which action to
execute, the default action will be executed. By default, the default action is named as
index. It can be changed by setting CController::defaultAction.

Below is the minimal code needed by a controller class. Since this controller does not
define any action, requesting for it would throw an exception.

class SiteController extends CController

{
}

2.4.1 Route

Controllers and actions are identified by IDs. Controller ID is in the format of path/

to/xyz which corresponds to the controller class file protected/controllers/path/to/

XyzController.php, where the token xyz should be replaced by actual names (e.g. post cor-
responds to protected/controllers/PostController.php). Action ID is the action method
name without the action prefix. For example, if a controller class contains a method named
actionEdit, the ID of the corresponding action would be edit.

Note: Before version 1.0.3, the controller ID format was path.to.xyz instead of
path/to/xyz.

Users request for a particular controller and action in terms of route. A route is formed
by concatenating a controller ID and an action ID separated by a slash. For example, the
route post/edit refers to PostController and its edit action. And by default, the URL
http://hostname/index.php?r=post/edit would request for this controller and action.

Note: By default, routes are case-sensitive. Since version 1.0.1, it is possible to
make routes case-insensitive by setting CUrlManager::caseSensitive to be false in
the application configuration. When in case-insensitive mode, make sure you follow
the convention that directories containing controller class files are in lower case, and
both controller map and action map are using keys in lower case.

http://yiiframework.com/doc/api/CController
http://yiiframework.com/doc/api/CController#defaultAction
http://yiiframework.com/doc/api/CUrlManager#caseSensitive
http://yiiframework.com/doc/api/CWebApplication#controllerMap
http://yiiframework.com/doc/api/CController#actions

2.4 Controller 23

Since version 1.0.3, an application can contain modules. The route for a controller action
inside a module is in the format of moduleID/controllerID/actionID. For more details, see
the section about modules.

2.4.2 Controller Instantiation

A controller instance is created when CWebApplication handles an incoming request.
Given the ID of the controller, the application will use the following rules to determine
what the controller class is and where the class file is located.

• If CWebApplication::catchAllRequest is specified, a controller will be created based
on this property, and the user-specified controller ID will be ignored. This is mainly
used to put the application under maintenance mode and display a static notice
page.

• If the ID is found in CWebApplication::controllerMap, the corresponding controller
configuration will be used to create the controller instance.

• If the ID is in the format of ’path/to/xyz’, the controller class name is assumed to
be XyzController and the corresponding class file is protected/controllers/path/

to/XyzController.php. For example, a controller ID admin/user would be resolved as
the controller class UserController and the class file protected/controllers/admin/

UserController.php. If the class file does not exist, a 404 CHttpException will be
raised.

In case when modules are used (available since version 1.0.3), the above process is slighly
different. In particular, the application will check if the ID refers to a controller inside
a module, and if so, the module instance will be created first followed by the controller
instance.

2.4.3 Action

As aforementioned, an action can be defined as a method whose name starts with the
word action. A more advanced way is to define an action class and ask the controller to
instantiate it when requested. This allows actions to be reused and thus introduces more
reusability.

To define a new action class, do the following:

class UpdateAction extends CAction

{

http://yiiframework.com/doc/api/CWebApplication
http://yiiframework.com/doc/api/CWebApplication#catchAllRequest
http://yiiframework.com/doc/api/CWebApplication#controllerMap
http://yiiframework.com/doc/api/CHttpException

24 2. Fundamentals

public function run()

{
// place the action logic here

}
}

In order for the controller to be aware of this action, we override the actions() method of
our controller class:

class PostController extends CController

{
public function actions()

{
return array(

’edit’=>’application.controllers.post.UpdateAction’,

);

}
}

In the above, we use the path alias application.controllers.post.UpdateAction to specify
that the action class file is protected/controllers/post/UpdateAction.php.

Writing class-based actions, we can organize an application in a modular fashion. For
example, the following directory structure may be used to organize the code for controllers:

protected/

controllers/

PostController.php

UserController.php

post/

CreateAction.php

ReadAction.php

UpdateAction.php

user/

CreateAction.php

ListAction.php

ProfileAction.php

UpdateAction.php

2.4.4 Filter

Filter is a piece of code that is configured to be executed before and/or after a controller
action executes. For example, an access control filter may be executed to ensure that the
user is authenticated before executing the requested action; a performance filter may be
used to measure the time spent in the action execution.

http://yiiframework.com/doc/api/CController#actions

2.4 Controller 25

An action can have multiple filters. The filters are executed in the order that they appear
in the filter list. A filter can prevent the execution of the action and the rest of the
unexecuted filters.

A filter can be defined as a controller class method. The method name must begin with
filter. For example, the existence of the filterAccessControl method defines a filter
named accessControl. The filter method must be of the signature:

public function filterAccessControl($filterChain)

{
// call $filterChain->run() to continue filtering and action execution

}

where $filterChain is an instance of CFilterChain which represents the filter list associated
with the requested action. Inside the filter method, we can call $filterChain->run() to
continue filtering and action execution.

A filter can also be an instance of CFilter or its child class. The following code defines a
new filter class:

class PerformanceFilter extends CFilter

{
protected function preFilter($filterChain)

{
// logic being applied before the action is executed

return true; // false if the action should not be executed

}

protected function postFilter($filterChain)

{
// logic being applied after the action is executed

}
}

To apply filters to actions, we need to override the CController::filters() method. The
method should return an array of filter configurations. For example,

class PostController extends CController

{
......

public function filters()

{
return array(

’postOnly + edit, create’,

http://yiiframework.com/doc/api/CFilterChain
http://yiiframework.com/doc/api/CFilter

26 2. Fundamentals

array(

’application.filters.PerformanceFilter - edit, create’,

’unit’=>’second’,

),

);

}
}

The above code specifies two filters: postOnly and PerformanceFilter. The postOnly fil-
ter is method-based (the corresponding filter method is defined in CController already);
while the PerformanceFilter filter is object-based. The path alias application.filters.

PerformanceFilter specifies that the filter class file is protected/filters/PerformanceFilter.
We use an array to configure PerformanceFilter so that it may be used to initialize the
property values of the filter object. Here the unit property of PerformanceFilter will be
initialized as ’second’.

Using the plus and the minus operators, we can specify which actions the filter should and
should not be applied to. In the above, the postOnly should be applied to the edit and
create actions, while PerformanceFilter should be applied to all actions EXCEPT edit

and create. If neither plus nor minus appears in the filter configuration, the filter will be
applied to all actions.

2.5 Model

A model is an instance of CModel or its child class. Models are used to keep data and
their relevant business rules.

A model represents a single data object. It could be a row in a database table or a form
of user inputs. Each field of the data object is represented as an attribute of the model.
The attribute has a label and can be validated against a set of rules.

Yii implements two kinds of models: form model and active record. They both extend
from the same base class CModel.

A form model is an instance of CFormModel. Form model is used to keep data collected
from user inputs. Such data are often collected, used and then discarded. For example, on
a login page, we can use a form model to represent the username and password information
that are provided by an end user. For more details, please refer to Working with Form

Active Record (AR) is a design pattern used to abstract database access in an object-
oriented fashion. Each AR object is an instance of CActiveRecord or its child class,
representing a single row in a database table. The fields in the row are represented as
properties of the AR object. Details about AR can be found in Active Record.

http://yiiframework.com/doc/api/CController
http://yiiframework.com/doc/api/CModel
http://yiiframework.com/doc/api/CModel
http://yiiframework.com/doc/api/CFormModel
http://yiiframework.com/doc/api/CActiveRecord

2.6 View 27

2.6 View

A view is a PHP script consisting of mainly elements of user interface. It can contain PHP
statements, but it is recommended that these statements should not alter data models and
should remain relatively simple. For the spirit of separation of logic and presentation, large
chunk of logic should be placed in controller or model instead of view.

A view has a name which is used to identify the view script file when rendering. The
name of a view is the same as the name of its view script file. For example, view edit

refers to a view script file named as edit.php. To render a view, call CController::render()
with the name of the view. The method will look for the corresponding view file under
the directory protected/views/ControllerID.

Inside the view script, we can access the controller instance using $this. We can thus pull

in any property of the controller by evaluating $this->propertyName in the view.

We can also use the following push approach to pass data to the view:

$this->render(’edit’, array(

’var1’=>$value1,

’var2’=>$value2,

));

In the above, the render() method will extract the second array parameter into variables.
As a result, in the view script we can access local variables $var1 and $var2.

2.6.1 Layout

Layout is a special view that is used to decorate views. It usually contains portions of
user interface that are common among several views. For example, a layout may contain
header and footer portions and embed the content view in between,

......header here......

<?php echo $content; ?>

......footer here......

where $content stores the rendering result of the content view.

Layout is implicitly applied when calling render(). By default, the view script protected/

views/layouts/main.php is used as the layout. This can be customized by changing either
CWebApplication::layout or CController::layout. To render a view without applying any
layout, call renderPartial() instead.

http://yiiframework.com/doc/api/CController#render
http://yiiframework.com/doc/api/CController#render
http://yiiframework.com/doc/api/CController#render
http://yiiframework.com/doc/api/CWebApplication#layout
http://yiiframework.com/doc/api/CController#layout
http://yiiframework.com/doc/api/CController#renderPartial

28 2. Fundamentals

2.6.2 Widget

A widget is an instance of CWidget or its child class. It is a component mainly for
presentational purpose. Widgets are usually embedded in a view script to generate some
complex yet self-contained user interface. For example, a calendar widget can be used
to render a complex calendar user interface. Widgets enable better reusability in user
interface.

To use a widget, do as follows in a view script:

<?php $this->beginWidget(’path.to.WidgetClass’); ?>

...body content that may be captured by the widget...

<?php $this->endWidget(); ?>

or

<?php $this->widget(’path.to.WidgetClass’); ?>

The latter is used when the widget does not need any body content.

Widgets can be configured to customize its behaviors. This is done by settings their initial
property values when calling CBaseController::beginWidget or CBaseController::widget.
For example, when using CMaskedTextField widget, we would like to specify the mask
being used. We can do so by passing an array of those property initial values as fol-
lows, where the array keys are property names and array values the initial values of the
corresponding widget properties:

<?php

$this->widget(’CMaskedTextField’,array(

’mask’=>’99/99/9999’

));

?>

To define a new widget, extend CWidget and override its init() and run() methods:

class MyWidget extends CWidget

{
public function init()

{
// this method is called by CController::beginWidget()

}

http://yiiframework.com/doc/api/CWidget
http://yiiframework.com/doc/api/CBaseController#beginWidget
http://yiiframework.com/doc/api/CBaseController#widget
http://yiiframework.com/doc/api/CMaskedTextField
http://yiiframework.com/doc/api/CWidget
http://yiiframework.com/doc/api/CWidget#init
http://yiiframework.com/doc/api/CWidget#run

2.7 Component 29

public function run()

{
// this method is called by CController::endWidget()

}
}

Like a controller, a widget can also have its own view. By default, widget view files are
located under the views subdirectory of the directory containing the widget class file.
These views can be rendered by calling CWidget::render(), similar to that in controller.
The only difference is that no layout will be applied to a widget view.

2.6.3 System View

System views refer to the views used by Yii to display error and logging information. For
example, when a user requests for a non-existing controller or action, Yii will throw an
exception explaining the error. Yii displays the exception using a specific system view.

The naming of system views follows some rules. Names like errorXXX refer to views for
displaying CHttpException with error code XXX. For example, if CHttpException is raised
with error code 404, the error404 view will be displayed.

Yii provides a set of default system views located under framework/views. They can be
customized by creating the same-named view files under protected/views/system.

2.7 Component

Yii applications are built upon components which are objects written to a specification.
A component is an instance of CComponent or its derived class. Using a component
mainly involves accessing its properties and raising/handling its events. The base class
CComponent specifies how to define properties and events.

2.7.1 Component Property

A component property is like an object’s public member variable. We can read its value
or assign a value to it. For example,

$width=$component->textWidth; // get the textWidth property

$component->enableCaching=true; // set the enableCaching property

To define a component property, we can simply declare a public member variable in the
component class. A more flexible way, however, is by defining getter and setter methods
like the following:

http://yiiframework.com/doc/api/CWidget#render
http://yiiframework.com/doc/api/CHttpException
http://yiiframework.com/doc/api/CHttpException
http://yiiframework.com/doc/api/CComponent
http://yiiframework.com/doc/api/CComponent

30 2. Fundamentals

public function getTextWidth()

{
return $this-> textWidth;

}

public function setTextWidth($value)

{
$this-> textWidth=$value;

}

The above code defines a writable property named textWidth (the name is case-insensitive).
When reading the property, getTextWidth() is invoked and its returned value becomes the
property value; Similarly, when writing the property, setTextWidth() is invoked. If the
setter method is not defined, the property would be read-only and writing it would throw
an exception. Using getter and setter methods to define a property has the benefit that
additional logic (e.g. performing validation, raising events) can be executed when reading
and writing the property.

Note: There is a slight difference between a property defined via getter/setter
methods and a class member variable. The name of the former is case-insensitive
while the latter is case-sensitive.

2.7.2 Component Event

Component events are special properties that take methods (called event handlers) as
their values. Attaching (assigning) a method to an event will cause the method to be
invoked automatically at the places where the event is raised. Therefore, the behavior of
a component can be modified in a way that may not be foreseen during the development
of the component.

A component event is defined by defining a method whose name starts with on. Like
property names defined via getter/setter methods, event names are case-insensitive. The
following code defines an onClicked event:

public function onClicked($event)

{
$this->raiseEvent(’onClicked’, $event);

}

where $event is an instance of CEvent or its child class representing the event parameter.

We can attach a method to this event as follows:

http://yiiframework.com/doc/api/CEvent

2.7 Component 31

$component->onClicked=$callback;

where $callback refers to a valid PHP callback. It can be a global function or a class
method. If the latter, the callback must be given as an array: array($object,’methodName’).

The signature of an event handler must be as follows:

function methodName($event)

{
......

}

where $event is the parameter describing the event (it originates from the raiseEvent()

call). The $event parameter is an instance of CEvent or its derived class. At the minimum,
it contains the information about who raises the event.

Starting from version 1.0.10, an event handler can also be an anonymous function which
is supported by PHP 5.3 or above. For example,

$component->onClicked=function($event) {
......

}

If we call onClicked() now, the onClicked event will be raised (inside onClicked()), and
the attached event handler will be invoked automatically.

An event can be attached with multiple handlers. When the event is raised, the handlers
will be invoked in the order that they are attached to the event. If a handler decides to
prevent the rest handlers from being invoked, it can set $event-¿handled to be true.

2.7.3 Component Behavior

Starting from version 1.0.2, a component has added support for mixin and can be attached
with one or several behaviors. A behavior is an object whose methods can be ’inherited’
by its attached component through the means of collecting functionality instead of spe-
cialization (i.e., normal class inheritance). A component can be attached with several
behaviors and thus achieve ’multiple inheritance’.

Behavior classes must implement the IBehavior interface. Most behaviors can extend
from the CBehavior base class. If a behavior needs to be attached to a model, it may also
extend from CModelBehavior or CActiveRecordBehavior which implements additional
features specifc for models.

http://yiiframework.com/doc/api/CEvent
http://yiiframework.com/doc/api/CEvent#handled
http://en.wikipedia.org/wiki/Mixin
http://yiiframework.com/doc/api/IBehavior
http://yiiframework.com/doc/api/CBehavior
http://yiiframework.com/doc/api/CModelBehavior
http://yiiframework.com/doc/api/CActiveRecordBehavior

32 2. Fundamentals

To use a behavior, it must be attached to a component first by calling the behavior’s
attach() method. Then we can call a behavior method via the component:

// $name uniquely identifies the behavior in the component

$component->attachBehavior($name,$behavior);

// test() is a method of $behavior

$component->test();

An attached behavior can be accessed like a normal property of the component. For
example, if a behavior named tree is attached to a component, we can obtain the reference
to this behavior object using:

$behavior=$component->tree;

// equivalent to the following:

// $behavior=$component->asa(’tree’);

A behavior can be temporarily disabled so that its methods are not available via the
component. For example,

$component->disableBehavior($name);

// the following statement will throw an exception

$component->test();

$component->enableBehavior($name);

// it works now

$component->test();

It is possible that two behaviors attached to the same component have methods of the
same name. In this case, the method of the first attached behavior will take precedence.

When used together with , behaviors are even more powerful. A behavior, when being
attached to a component, can attach some of its methods to some events of the component.
By doing so, the behavior gets a chance to observe or change the normal execution flow
of the component.

2.8 Module

Note: Support for module has been available since version 1.0.3.

A module is a self-contained software unit that consists of models, views, controllers and
other supporting components. In many aspects, a module resembles to an application.

http://yiiframework.com/doc/api/IBehavior#attach

2.8 Module 33

The main difference is that a module cannot be deployed alone and it must reside inside
of an application. Users can access the controllers in a module like they do with normal
application controllers.

Modules are useful in several scenarios. For a large-scale application, we may divide it into
several modules, each being developed and maintained separately. Some commonly used
features, such as user management, comment management, may be developed in terms of
modules so that they can be reused easily in future projects.

2.8.1 Creating Module

A module is organized as a directory whose name serves as its unique ID. The structure
of the module directory is similar to that of the application base directory. The following
shows the typical directory structure of a module named forum:

forum/

ForumModule.php the module class file

components/ containing reusable user components

views/ containing view files for widgets

controllers/ containing controller class files

DefaultController.php the default controller class file

extensions/ containing third-party extensions

models/ containing model class files

views/ containing controller view and layout files

layouts/ containing layout view files

default/ containing view files for DefaultController

index.php the index view file

A module must have a module class that extends from CWebModule. The class name
is determined using the expression ucfirst($id).’Module’, where $id refers to the mod-
ule ID (or the module directory name). The module class serves as the central place
for storing information shared among the module code. For example, we can use CWeb-
Module::params to store module parameters, and use CWebModule::components to share
application components at the module level.

Tip: We can use the yiic tool to create the basic skeleton of a new module. For
example, to create the above forum module, we can execute the following commands
in a command line window:

% cd WebRoot/testdrive

% protected/yiic shell

Yii Interactive Tool v1.0

Please type ’help’ for help. Type ’exit’ to quit.

>> module forum

http://yiiframework.com/doc/api/CWebModule#id
http://yiiframework.com/doc/api/CWebModule
http://yiiframework.com/doc/api/CWebModule#params
http://yiiframework.com/doc/api/CWebModule#params
http://yiiframework.com/doc/api/CWebModule#components

34 2. Fundamentals

2.8.2 Using Module

To use a module, first place the module directory under modules of the application base
directory. Then declare the module ID in the modules property of the application. For
example, in order to use the above forum module, we can use the following application
configuration:

return array(

......

’modules’=>array(’forum’,...),

......

);

A module can also be configured with initial property values. The usage is very similar
to configuring application components. For example, the forum module may have a prop-
erty named postPerPage in its module class which can be configured in the application
configuration as follows:

return array(

......

’modules’=>array(

’forum’=>array(

’postPerPage’=>20,

),

),

......

);

The module instance may be accessed via the module property of the currently active
controller. Through the module instance, we can then access information that are shared
at the module level. For example, in order to access the above postPerPage information,
we can use the following expression:

$postPerPage=Yii::app()->controller->module->postPerPage;

// or the following if $this refers to the controller instance

// $postPerPage=$this->module->postPerPage;

A controller action in a module can be accessed using the route moduleID/controllerID/

actionID. For example, assuming the above forum module has a controller named PostController,
we can use the route forum/post/create to refer to the create action in this controller. The
corresponding URL for this route would be http://www.example.com/index.php?r=forum/

post/create.

http://yiiframework.com/doc/api/CWebApplication#modules
http://yiiframework.com/doc/api/CController#module

2.9 Path Alias and Namespace 35

Tip: If a controller is in a sub-directory of controllers, we can still use the
above route format. For example, assuming PostController is under forum/

controllers/admin, we can refer to the create action using forum/admin/post/

create.

2.8.3 Nested Module

Modules can be nested. That is, a module can contain another module. We call the
former parent module while the latter child module. Child modules must be placed under
the modules directory of the parent module. To access a controller action in a child module,
we should use the route parentModuleID/childModuleID/controllerID/actionID.

2.9 Path Alias and Namespace

Yii uses path aliases extensively. A path alias is associated with a directory or file path.
It is specified in dot syntax, similar to that of widely adopted namespace format:

RootAlias.path.to.target

where RootAlias is the alias of some existing directory. By calling YiiBase::setPathOfAlias(),
we can define new path aliases.For convenience, Yii predefines the following root aliases:

• system: refers to the Yii framework directory;

• application: refers to the application’s base directory;

• webroot: refers to the directory containing the entry script file. This alias has been
available since version 1.0.3.

• ext: refers to the directory containing all third-party extensions. This alias has been
available since version 1.0.8.

Additionally, if the application uses modules, a root alias is also predefined for each module
ID and refers to the base path of the corresponding module. This feature has been available
since version 1.0.3.

By using YiiBase::getPathOfAlias(), an alias can be translated to its corresponding path.
For example, system.web.CController would be translated as yii/framework/web/CController.

Using aliases, it is very convenient to import the definition of a class. For example, if we
want to include the definition of the CController class, we can call the following:

http://yiiframework.com/doc/api/YiiBase#setPathOfAlias
http://yiiframework.com/doc/api/YiiBase#getPathOfAlias
http://yiiframework.com/doc/api/CController

36 2. Fundamentals

Yii::import(’system.web.CController’);

The import method differs from include and require in that it is more efficient. The class
definition being imported is actually not included until it is referenced for the first time.
Importing the same namespace multiple times is also much faster than include once and
require once.

Tip: When referring to a class defined by the Yii framework, we do not need to
import or include it. All core Yii classes are pre-imported.

We can also use the following syntax to import a whole directory so that the class files
under the directory can be automatically included when needed.

Yii::import(’system.web.*’);

Besides import, aliases are also used in many other places to refer to classes. For example,
an alias can be passed to Yii::createComponent() to create an instance of the corresponding
class, even if the class file was not included previously.

Do not confuse path alias with namespace. A namespace refers to a logical grouping of
some class names so that they can be differentiated from other class names even if their
names are the same, while path alias is used to refer to a class file or directory. Path alias
does not conflict with namespace.

Tip: Because PHP prior to 5.3.0 does not support namespace intrinsically, you
cannot create instances of two classes who have the same name but with different
definitions. For this reason, all Yii framework classes are prefixed with a letter ’C’
(meaning ’class’) so that they can be differentiated from user-defined classes. It
is recommended that the prefix ’C’ be reserved for Yii framework use only, and
user-defined classes be prefixed with other letters.

2.10 Conventions

Yii favors conventions over configurations. Follow the conventions and one can create
sophisticated Yii applications without writing and managing complex configurations. Of
course, Yii can still be customized in nearly every aspect with configurations when needed.

Below we describe conventions that are recommended for Yii programming. For conve-
nience, we assume that WebRoot is the directory that an Yii application is installed at.

http://yiiframework.com/doc/api/YiiBase#import
http://yiiframework.com/doc/api/YiiBase#import
http://yiiframework.com/doc/api/Yii#createComponent

2.10 Conventions 37

2.10.1 URL

By default, Yii recognizes URLs with the following format:

http://hostname/index.php?r=ControllerID/ActionID

The r GET variable refers to the route that can be resolved by Yii into controller and
action. If ActionID is omitted, the controller will take the default action (defined via CCon-
troller::defaultAction); and if ControllerID is also omitted (or the r variable is absent), the
application will use the default controller (defined via CWebApplication::defaultController).

With the help of CUrlManager, it is possible to create and recognize more SEO-friendly
URLs, such as http://hostname/ControllerID/ActionID.html. This feature is covered in
detail in URL Management.

2.10.2 Code

Yii recommends naming variables, functions and class types in camel case which capitalizes
each word in the name and joins them without spaces. Variable and function names
should have their first word all in lower-case, in order to differentiate from class names
(e.g. $basePath, runController(), LinkPager). For private class member variables, it is
recommended to prefix their names with an underscore character (e.g. $ actionList).

Because namespace is not supported prior to PHP 5.3.0, it is recommended that classes
be named in some unique way to avoid name conflict with third-party classes. For this
reason, all Yii framework classes are prefixed with letter ”C”.

A special rule for controller class names is that they must be appended with the word
Controller. The controller ID is then defined as the class name with first letter in lower
case and the word Controller truncated. For example, the PageController class will
have the ID page. This rule makes the application more secure. It also makes the URLs
related with controllers a bit cleaner (e.g. /index.php?r=page/index instead of /index.

php?r=PageController/index).

2.10.3 Configuration

A configuration is an array of key-value pairs. Each key represents the name of a prop-
erty of the object to be configured, and each value the corresponding property’s initial
value. For example, array(’name’=>’My application’, ’basePath’=>’./protected’) ini-
tializes the name and basePath properties to their corresponding array values.

Any writable properties of an object can be configured. If not configured, the properties

http://yiiframework.com/doc/api/CController#defaultAction
http://yiiframework.com/doc/api/CController#defaultAction
http://yiiframework.com/doc/api/CWebApplication#defaultController
http://yiiframework.com/doc/api/CUrlManager

38 2. Fundamentals

will take their default values. When configuring a property, it is worthwhile to read the
corresponding documentation so that the initial value can be given properly.

2.10.4 File

Conventions for naming and using files depend on their types.

Class files should be named after the public class they contain. For example, the CCon-
troller class is in the CController.php file. A public class is a class that may be used by
any other classes. Each class file should contain at most one public class. Private classes
(classes that are only used by a single public class) may reside in the same file with the
public class.

View files should be named after the view name. For example, the index view is in the
index.php file. A view file is a PHP script file that contains HTML and PHP code mainly
for presentational purpose.

Configuration files can be named arbitrarily. A configuration file is a PHP script whose
sole purpose is to return an associative array representing the configuration.

2.10.5 Directory

Yii assumes a default set of directories used for various purposes. Each of them can be
customized if needed.

• WebRoot/protected: this is the application base directory holding all security-sensitive
PHP scripts and data files. Yii has a default alias named application associated
with this path. This directory and everything under should be protected from being
accessed by Web users. It can be customized via CWebApplication::basePath.

• WebRoot/protected/runtime: this directory holds private temporary files generated
during runtime of the application. This directory must be writable by Web server
process. It can be customized via CApplication::runtimePath.

• WebRoot/protected/extensions: this directory holds all third-party extensions. It
can be customized via CApplication::extensionPath.

• WebRoot/protected/modules: this directory holds all application modules, each rep-
resented as a subdirectory.

• WebRoot/protected/controllers: this directory holds all controller class files. It can
be customized via CWebApplication::controllerPath.

http://yiiframework.com/doc/api/CController
http://yiiframework.com/doc/api/CController
http://yiiframework.com/doc/api/CWebApplication#basePath
http://yiiframework.com/doc/api/CApplication#runtimePath
http://yiiframework.com/doc/api/CApplication#extensionPath
http://yiiframework.com/doc/api/CWebApplication#controllerPath

2.11 Development Workflow 39

• WebRoot/protected/views: this directory holds all view files, including controller
views, layout views and system views. It can be customized via CWebApplica-
tion::viewPath.

• WebRoot/protected/views/ControllerID: this directory holds view files for a single
controller class. Here ControllerID stands for the ID of the controller. It can be
customized via CController::getViewPath.

• WebRoot/protected/views/layouts: this directory holds all layout view files. It can
be customized via CWebApplication::layoutPath.

• WebRoot/protected/views/system: this directory holds all system view files. System
views are templates used in displaying exceptions and errors. It can be customized
via CWebApplication::systemViewPath.

• WebRoot/assets: this directory holds published asset files. An asset file is a private
file that may be published to become accessible to Web users. This directory must be
writable by Web server process. It can be customized via CAssetManager::basePath.

• WebRoot/themes: this directory holds various themes that can be applied to the appli-
cation. Each subdirectory represents a single theme whose name is the subdirectory
name. It can be customized via CThemeManager::basePath.

2.11 Development Workflow

Having described the fundamental concepts of Yii, we show the common workflow for
developing a web application using Yii. The workflow assumes that we have done the
requirement analysis as well as the necessary design analysis for the application.

1. Create the skeleton directory structure. The yiic tool described in Creating First
Yii Application can be used to speed up this step.

2. Configure the application. This is done by modifying the application configuration
file. This step may also require writing some application components (e.g. the user
component).

3. Create a model class for each type of data to be managed. Again, yiic can be used
to automatically generate the active record class for each interested database table.

4. Create a controller class for each type of user requests. How to classify user requests
depends on the actual requirement. In general, if a model class needs to be accessed
by users, it should have a corresponding controller class. The yiic tool can automate
this step, too.

http://yiiframework.com/doc/api/CWebApplication#viewPath
http://yiiframework.com/doc/api/CWebApplication#viewPath
http://yiiframework.com/doc/api/CController#getViewPath
http://yiiframework.com/doc/api/CWebApplication#layoutPath
http://yiiframework.com/doc/api/CWebApplication#systemViewPath
http://yiiframework.com/doc/api/CAssetManager#basePath
http://yiiframework.com/doc/api/CThemeManager#basePath

40 2. Fundamentals

5. Implement actions and their corresponding views. This is where the real work needs
to be done.

6. Configure necessary action filters in controller classes.

7. Create themes if the theming feature is required.

8. Create translated messages if internationalization is required.

9. Spot data and views that can be cached and apply appropriate caching techniques.

10. Final tune up and deployment.

For each of the above steps, test cases may need to be created and performed.

Chapter 3

Working with Forms

3.1 Working with Form

Collecting user data via HTML forms is one of the major tasks in Web application de-
velopment. Besides designing forms, developers need to populate the form with existing
data or default values, validate user input, display appropriate error messages for invalid
input, and save the input to persistent storage. Yii greatly simplifies this workflow with
its MVC architecture.

The following steps are typically needed when dealing with forms in Yii:

1. Create a model class representing the data fields to be collected;

2. Create a controller action with code that responds to form submission.

3. Create a form in the view script file associated with the controller action.

In the next subsections, we describe each of these steps in detail.

3.2 Creating Model

Before writing the HTML code needed by a form, we should decide what kind of data we
are expecting from end users and what rules these data should comply with. A model class
can be used to record these information. A model, as defined in the Model subsection, is
the central place for keeping user inputs and validating them.

Depending on how we make use of the user input, we can create two types of model. If
the user input is collected, used and then discarded, we would create a form model; if the
user input is collected and saved into database, we would use an active record instead.
Both types of model share the same base class CModel which defines the common interface
needed by form.

http://yiiframework.com/doc/api/CModel

42 3. Working with Forms

Note: We are mainly using form models in the examples of this section. However,
the same can also be applied to active record models.

3.2.1 Defining Model Class

Below we create a LoginForm model class used to collect user input on a login page. Because
the login information is only used to authenticate the user and does not need to be saved,
we create LoginForm as a form model.

class LoginForm extends CFormModel

{
public $username;

public $password;

public $rememberMe=false;

}

Three attributes are declared in LoginForm: $username, $password and $rememberMe. They
are used to keep the user-entered username and password, and the option whether the
user wants to remember his login. Because $rememberMe has a default value false, the
corresponding option when initially displayed in the login form will be unchecked.

Info: Instead of calling these member variables properties, we use the name at-
tributes to differentiate them from normal properties. An attribute is a property
that is mainly used to store data coming from user input or database.

3.2.2 Declaring Validation Rules

Once a user submits his inputs and the model gets populated, we need to make sure the
inputs are valid before using them. This is done by performing validation of the inputs
against a set of rules. We specify the validation rules in the rules() method which should
return an array of rule configurations.

class LoginForm extends CFormModel

{
public $username;

public $password;

public $rememberMe=false;

public function rules()

{

3.2 Creating Model 43

return array(

array(’username, password’, ’required’),

array(’password’, ’authenticate’),

);

}

public function authenticate($attribute,$params)

{
if(!$this->hasErrors()) // we only want to authenticate when no input errors

{
$identity=new UserIdentity($this->username,$this->password);

if($identity->authenticate())

{
$duration=$this->rememberMe ? 3600*24*30 : 0; // 30 days

Yii::app()->user->login($identity,$duration);

}
else

$this->addError(’password’,’Incorrect password.’);

}
}

}

The above code specifies that username and password are both required, password should
be authenticated.

Each rule returned by rules() must be of the following format:

array(’AttributeList’, ’Validator’, ’on’=>’ScenarioList’, ...additional options)

where AttributeList is a string of comma-separated attribute names which need to be
validated according to the rule; Validator specifies what kind of validation should be
performed; the on parameter is optional which specifies a list of scenarios where the rule
should be applied; and additional options are name-value pairs which are used to initialize
the corresponding validator’s property values.

There are three ways to specify Validator in a validation rule. First, Validator can be
the name of a method in the model class, like authenticate in the above example. The
validator method must be of the following signature:

/**

* @param string the name of the attribute to be validated

* @param array options specified in the validation rule

*/

public function ValidatorName($attribute,$params) { ... }

44 3. Working with Forms

Second, Validator can be the name of a validator class. When the rule is applied, an
instance of the validator class will be created to perform the actual validation. The
additional options in the rule are used to initialize the instance’s attribute values. A
validator class must extend from CValidator.

Note: When specifying rules for an active record model, we can use a special
option named on. The option can be either ’insert’ or ’update’ so that the rule
is applied only when inserting or updating the record, respectively. If not set, the
rule would be applied in both cases when save() is called.

Third, Validator can be a predefined alias to a validator class. In the above example, the
name required is the alias to CRequiredValidator which ensures the attribute value being
validated is not empty. Below is the complete list of predefined validator aliases:

• boolean: alias of CBooleanValidator, ensuring the attribute has a value that is either
CBooleanValidator::trueValue or CBooleanValidator::falseValue.

• captcha: alias of CCaptchaValidator, ensuring the attribute is equal to the verifica-
tion code displayed in a CAPTCHA.

• compare: alias of CCompareValidator, ensuring the attribute is equal to another
attribute or constant.

• email: alias of CEmailValidator, ensuring the attribute is a valid email address.

• default: alias of CDefaultValueValidator, assigning a default value to the specified
attributes.

• exist: alias of CExistValidator, ensuring the attribute value can be found in the
specified table column.

• file: alias of CFileValidator, ensuring the attribute contains the name of an up-
loaded file.

• filter: alias of CFilterValidator, transforming the attribute with a filter.

• in: alias of CRangeValidator, ensuring the data is among a pre-specified list of
values.

• length: alias of CStringValidator, ensuring the length of the data is within certain
range.

• match: alias of CRegularExpressionValidator, ensuring the data matches a regular
expression.

http://yiiframework.com/doc/api/CValidator
http://yiiframework.com/doc/api/CRequiredValidator
http://yiiframework.com/doc/api/CBooleanValidator
http://yiiframework.com/doc/api/CBooleanValidator#trueValue
http://yiiframework.com/doc/api/CBooleanValidator#falseValue
http://yiiframework.com/doc/api/CCaptchaValidator
http://en.wikipedia.org/wiki/Captcha
http://yiiframework.com/doc/api/CCompareValidator
http://yiiframework.com/doc/api/CEmailValidator
http://yiiframework.com/doc/api/CDefaultValueValidator
http://yiiframework.com/doc/api/CExistValidator
http://yiiframework.com/doc/api/CFileValidator
http://yiiframework.com/doc/api/CFilterValidator
http://yiiframework.com/doc/api/CRangeValidator
http://yiiframework.com/doc/api/CStringValidator
http://yiiframework.com/doc/api/CRegularExpressionValidator

3.2 Creating Model 45

• numerical: alias of CNumberValidator, ensuring the data is a valid number.

• required: alias of CRequiredValidator, ensuring the attribute is not empty.

• type: alias of CTypeValidator, ensuring the attribute is of specific data type.

• unique: alias of CUniqueValidator, ensuring the data is unique in a database table
column.

• url: alias of CUrlValidator, ensuring the data is a valid URL.

Below we list some examples of using the predefined validators:

// username is required

array(’username’, ’required’),

// username must be between 3 and 12 characters

array(’username’, ’length’, ’min’=>3, ’max’=>12),

// when in register scenario, password must match password2

array(’password’, ’compare’, ’compareAttribute’=>’password2’, ’on’=>’register’),

// when in login scenario, password must be authenticated

array(’password’, ’authenticate’, ’on’=>’login’),

3.2.3 Securing Attribute Assignments

Note: scenario-based attribute assignment has been available since version 1.0.2.

After a model instance is created, we often need to populate its attributes with the data
submitted by end-users. This can be done conveniently using the following massive as-
signment:

$model=new LoginForm;

$model->scenario=’login’;

if(isset($ POST[’LoginForm’]))

$model->attributes=$ POST[’LoginForm’];

Note: The scenario property has been available since version 1.0.4. The massive
assignment will take this property value to determine which attributes can be mas-
sively assigned. In version 1.0.2 and 1.0.3, we need to use the following way to
perform massive assignment for a specific scenario:

$model->setAttributes($ POST[’LoginForm’], ’login’);

http://yiiframework.com/doc/api/CNumberValidator
http://yiiframework.com/doc/api/CRequiredValidator
http://yiiframework.com/doc/api/CTypeValidator
http://yiiframework.com/doc/api/CUniqueValidator
http://yiiframework.com/doc/api/CUrlValidator
http://yiiframework.com/doc/api/CModel#scenario

46 3. Working with Forms

The last statement is a massive assignment which assigns every entry in $ POST[’LoginForm’]

to the corresponding model attribute in the login scenario. It is equivalent to the following
assignments:

foreach($ POST[’LoginForm’] as $name=>$value)

{
if($name is a safe attribute)

$model->$name=$value;

}

The task of deciding whether a data entry is safe or not is based on the return value of a
method named safeAttributes and the specified scenario. By default, the method returns
all public member variables as safe attributes for CFormModel, while it returns all table
columns except the primary key as safe attributes for CActiveRecord. We may override
this method to limit safe attributes according to scenarios. For example, a user model
may contain many attributes, but in login scenario we only need to use username and
password attributes. We can specify this limit as follows:

public function safeAttributes()

{
return array(

parent::safeAttributes(),

’login’ => ’username, password’,

);

}

More accurately, the return value of the safeAttributes method should be of the following
structure:

array(

// these attributes can be massively assigned in any scenario

// that is not explicitly specified below

’attr1, attr2, ...’,

*

// these attributes can be massively assigned only in scenario 1

’scenario1’ => ’attr2, attr3, ...’,

*

// these attributes can be massively assigned only in scenario 2

’scenario2’ => ’attr1, attr3, ...’,

)

If the model is not scenario-sensitive (i.e., it is only used in one scenario, or all scenarios
share the same set of safe attributes), the return value can be simplified as a single string:

http://yiiframework.com/doc/api/CFormModel
http://yiiframework.com/doc/api/CActiveRecord

3.2 Creating Model 47

’attr1, attr2, ...’

For data entries that are not safe, we need to assign them to the corresponding attributes
using individual assign statements, like the following:

$model->permission=’admin’;

$model->id=1;

3.2.4 Triggering Validation

Once a model is populated with user-submitted data, we can call CModel::validate() to
trigger the data validation process. The method returns a value indicating whether the
validation is successful or not. For CActiveRecord model, validation may also be auto-
matically triggered when we call its CActiveRecord::save() method.

When we call CModel::validate(), we may specify a scenario parameter. Only the valida-
tion rules that apply to the specified scenario will be executed. A validation rule applies
to a scenario if the on option of the rule is not set or contains the specified scenario name.
If we do not specify the scenario when calling CModel::validate(), only those rules whose
on option is not set will be executed.

For example, we execute the following statement to perform the validation when registering
a user:

$model->scenario=’register’;

$model->validate();

Note: The scenario property has been available since version 1.0.4. The validation
method will take this property value to determine which rules to be checked with. In
version 1.0.2 and 1.0.3, we need to use the following way to perform scenario-based
validation:

$model->validate(’register’);

We may declare the validation rules in the form model class as follows,

public function rules()

{
return array(

array(’username, password’, ’required’),

http://yiiframework.com/doc/api/CModel#validate
http://yiiframework.com/doc/api/CActiveRecord
http://yiiframework.com/doc/api/CActiveRecord#save
http://yiiframework.com/doc/api/CModel#validate
http://yiiframework.com/doc/api/CModel#validate
http://yiiframework.com/doc/api/CModel#scenario

48 3. Working with Forms

array(’password repeat’, ’required’, ’on’=>’register’),

array(’password’, ’compare’, ’on’=>’register’),

);

}

As a result, the first rule will be applied in all scenarios, while the next two rules will only
be applied in the register scenario.

Note: scenario-based validation has been available since version 1.0.1.

3.2.5 Retrieving Validation Errors

We can use CModel::hasErrors() to check if there is any validation error, and if yes, we
can use CModel::getErrors() to obtain the error messages. Both methods can be used for
all attributes or an individual attribute.

3.2.6 Attribute Labels

When designing a form, we often need to display a label for each input field. The label
tells a user what kind of information he is expected to enter into the field. Although we
can hardcode a label in a view, it would offer more flexibility and convenience if we specify
it in the corresponding model.

By default, CModel will simply return the name of an attribute as its label. This can be
customized by overriding the attributeLabels() method. As we will see in the following
subsections, specifying labels in the model allows us to create a form more quickly and
powerful.

3.3 Creating Action

Once we have a model, we can start to write logic that is needed to manipulate the model.
We place this logic inside a controller action. For the login form example, the following
code is needed:

public function actionLogin()

{
$form=new LoginForm;

if(isset($ POST[’LoginForm’]))

{
// collects user input data

$form->attributes=$ POST[’LoginForm’];

http://yiiframework.com/doc/api/CModel#hasErrors
http://yiiframework.com/doc/api/CModel#getErrors
http://yiiframework.com/doc/api/CModel
http://yiiframework.com/doc/api/CModel#attributeLabels

3.3 Creating Action 49

// validates user input and redirect to previous page if validated

if($form->validate())

$this->redirect(Yii::app()->user->returnUrl);

}
// displays the login form

$this->render(’login’,array(’user’=>$form));

}

In the above, we first create a LoginForm instance; if the request is a POST request
(meaning the login form is submitted), we populate $form with the submitted data $

POST[’LoginForm’]; we then validate the input and if successful, redirect the user browser
to the page that previously needed authentication. If the validation fails, or if the action
is initially accessed, we render the login view whose content is to be described in the next
subsection.

Tip: In the login action, we use Yii::app()->user->returnUrl to get the URL of
the page that previously needed authentication. The component Yii::app()->user
is of type CWebUser (or its child class) which represents user session information
(e.g. username, status). For more details, see Authentication and Authorization.

Let’s pay special attention to the following PHP statement that appears in the login

action:

$form->attributes=$ POST[’LoginForm’];

As we described in Securing Attribute Assignments, this line of code populates the model
with the user submitted data. The attributes property is defined by CModel which
expects an array of name-value pairs and assigns each value to the corresponding model
attribute. So if $ POST[’LoginForm’] gives us such an array, the above code would be
equivalent to the following lengthy one (assuming every needed attribute is present in the
array):

$form->username=$ POST[’LoginForm’][’username’];

$form->password=$ POST[’LoginForm’][’password’];

$form->rememberMe=$ POST[’LoginForm’][’rememberMe’];

Note: In order to let $ POST[’LoginForm’] to give us an array instead of a string,
we stick to a convention when naming input fields in the view. In particular, for an
input field corresponding to attribute a of model class C, we name it as C[a]. For
example, we would use LoginForm[username] to name the input field corresponding
to the username attribute.

http://yiiframework.com/doc/api/CWebUser
http://yiiframework.com/doc/api/CModel

50 3. Working with Forms

The remaining task now is to create the login view which should contain an HTML form
with the needed input fields.

3.4 Creating Form

Writing the login view is straightforward. We start with a form tag whose action attribute
should be the URL of the login action described previously. We then insert labels and
input fields for the attributes declared in the LoginForm class. At the end we insert a
submit button which can be clicked by users to submit the form. All these can be done
in pure HTML code.

Yii provides a few helper classes to facilitate view composition. For example, to cre-
ate a text input field, we can call CHtml::textField(); to create a drop-down list, call
CHtml::dropDownList().

Info: One may wonder what is the benefit of using helpers if they require similar
amount of code when compared with plain HTML code. The answer is that the
helpers can provide more than just HTML code. For example, the following code
would generate a text input field which can trigger form submission if its value is
changed by users.

CHtml::textField($name,$value,array(’submit’=>’’));

It would otherwise require writing clumsy JavaScript everywhere.

In the following, we use CHtml to create the login form. We assume that the variable
$user represents LoginForm instance.

<div class="yiiForm">

<?php echo CHtml::beginForm(); ?>

<?php echo CHtml::errorSummary($user); ?>

<div class="simple">

<?php echo CHtml::activeLabel($user,’username’); ?>

<?php echo CHtml::activeTextField($user,’username’); ?>

</div>

<div class="simple">

<?php echo CHtml::activeLabel($user,’password’); ?>

<?php echo CHtml::activePasswordField($user,’password’);

?>

</div>

http://yiiframework.com/doc/api/CHtml#textField
http://yiiframework.com/doc/api/CHtml#dropDownList
http://yiiframework.com/doc/api/CHtml

3.5 Collecting Tabular Input 51

<div class="action">

<?php echo CHtml::activeCheckBox($user,’rememberMe’); ?>

Remember me next time

<?php echo CHtml::submitButton(’Login’); ?>

</div>

<?php echo CHtml::endForm(); ?>

</div><!-- yiiForm -->

The above code generates a more dynamic form. For example, CHtml::activeLabel()
generates a label associated with the specified model attribute. If the attribute has an
input error, the label’s CSS class will be changed to error, which changes the appearance
of the label with appropriate CSS styles. Similarly, CHtml::activeTextField() generates a
text input field for the specified model attribute and changes its CSS class upon any input
error.

If we use the CSS style file form.css provided by the yiic script, the generated form would
be like the following:

Figure 3.1: The login page

Figure 3.2: The login with error page

3.5 Collecting Tabular Input

Sometimes we want to collect user input in a batch mode. That is, the user can enter
the information for multiple model instances and submit them all at once. We call this

http://yiiframework.com/doc/api/CHtml#activeLabel
http://yiiframework.com/doc/api/CHtml#activeTextField

52 3. Working with Forms

tabular input because the input fields are often presented in an HTML table.

To work with tabular input, we first need to create or populate an array of model instances,
depending on whether we are inserting or updating the data. We then retrieve the user
input data from the $ POST variable and assign it to each model. A slight difference from
single model input is that we retrieve the input data using $ POST[’ModelClass’][$i]

instead of $ POST[’ModelClass’].

public function actionBatchUpdate()

{
// retrieve items to be updated in a batch mode

// assuming each item is of model class ’Item’

$items=$this->getItemsToUpdate();

if(isset($ POST[’Item’]))

{
$valid=true;

foreach($items as $i=>$item)

{
if(isset($ POST[’Item’][$i]))

$item->attributes=$ POST[’Item’][$i];

$valid=$valid && $item->validate();

}
if($valid) // all items are valid

// ...do something here

}
// displays the view to collect tabular input

$this->render(’batchUpdate’,array(’items’=>$items));

}

Having the action ready, we need to work on the batchUpdate view to display the input
fields in an HTML table.

<div class="yiiForm">

<?php echo CHtml::beginForm(); ?>

<table>

<tr><th>Name</th><th>Price</th><th>Count</th><th>Description</th></tr>

<?php foreach($items as $i=>$item): ?>

<tr>

<td><?php echo CHtml::activeTextField($item,"name[$i]"); ?></td>

<td><?php echo CHtml::activeTextField($item,"price[$i]"); ?></td>

<td><?php echo CHtml::activeTextField($item,"count[$i]"); ?></td>

<td><?php echo CHtml::activeTextArea($item,"description[$i]"); ?></td>

</tr>

<?php endforeach; ?>

</table>

3.5 Collecting Tabular Input 53

<?php echo CHtml::submitButton(’Save’); ?>

<?php echo CHtml::endForm(); ?>

</div><!-- yiiForm -->

Note in the above that we use "name[$i]" instead of "name" as the second parameter when
calling CHtml::activeTextField.

If there is anything validation error, the corresponding input fields will be highlighted
automatically, just like the single model input we described earlier on.

http://yiiframework.com/doc/api/CHtml#activeTextField

54 3. Working with Forms

Chapter 4

Working with Databases

4.1 Working with Database

Yii provides powerful support for database programming. Built on top of the PHP Data
Objects (PDO) extension, Yii Data Access Objects (DAO) enables accessing to different
database management systems (DBMS) in a single uniform interface. Applications devel-
oped using Yii DAO can be easily switched to use a different DBMS without the need to
modify the data accessing code. Yii Active Record (AR), implemented as a widely adopted
Object-Relational Mapping (ORM) approach, further simplifies database programming.
Representing a table in terms of a class and a row an instance, Yii AR eliminates the
repetitive task of writing those SQL statements that mainly deal with CRUD (create,
read, update and delete) operations.

Although Yii DAO and AR can handle nearly all database-related tasks, you can still use
your own database libraries in your Yii application. As a matter of fact, Yii framework is
carefully designed to be used together with other third-party libraries.

4.2 Data Access Objects (DAO)

Data Access Objects (DAO) provides a generic API to access data stored in different
database management systems (DBMS). As a result, the underlying DBMS can be changed
to a different one without requiring change of the code which uses DAO to access the data.

Yii DAO is built on top of PHP Data Objects (PDO) which is an extension providing
unified data access to many popular DBMS, such as MySQL, PostgreSQL. Therefore, to
use Yii DAO, the PDO extension and the specific PDO database driver (e.g. PDO MYSQL)
have to be installed.

Yii DAO mainly consists of the following four classes:

• CDbConnection: represents a connection to a database.

http://php.net/manual/en/book.pdo.php
http://yiiframework.com/doc/api/CDbConnection

56 4. Working with Databases

• CDbCommand: represents an SQL statement to execute against a database.

• CDbDataReader: represents a forward-only stream of rows from a query result set.

• CDbTransaction: represents a DB transaction.

In the following, we introduce the usage of Yii DAO in different scenarios.

4.2.1 Establishing Database Connection

To establish a database connection, create a CDbConnection instance and activate it. A
data source name (DSN) is needed to specify the information required to connect to the
database. A username and password may also be needed to establish the connection. An
exception will be raised in case an error occurs during establishing the connection (e.g.
bad DSN or invalid username/password).

$connection=new CDbConnection($dsn,$username,$password);

// establish connection. You may try...catch possible exceptions

$connection->active=true;

......

$connection->active=false; // close connection

The format of DSN depends on the PDO database driver in use. In general, a DSN consists
of the PDO driver name, followed by a colon, followed by the driver-specific connection
syntax. See PDO documentation for complete information. Below is a list of commonly
used DSN formats:

• SQLite: sqlite:/path/to/dbfile

• MySQL: mysql:host=localhost;dbname=testdb

• PostgreSQL: pgsql:host=localhost;port=5432;dbname=testdb

• SQL Server: mssql:host=localhost;dbname=testdb

• Oracle: oci:dbname=//localhost:1521/testdb

Because CDbConnection extends from CApplicationComponent, we can also use it as an
application component. To do so, configure in a db (or other name) application component
in the application configuration as follows,

http://yiiframework.com/doc/api/CDbCommand
http://yiiframework.com/doc/api/CDbDataReader
http://yiiframework.com/doc/api/CDbTransaction
http://yiiframework.com/doc/api/CDbConnection
http://www.php.net/manual/en/pdo.construct.php
http://yiiframework.com/doc/api/CDbConnection
http://yiiframework.com/doc/api/CApplicationComponent

4.2 Data Access Objects (DAO) 57

array(

......

’components’=>array(

......

’db’=>array(

’class’=>’CDbConnection’,

’connectionString’=>’mysql:host=localhost;dbname=testdb’,

’username’=>’root’,

’password’=>’password’,

’emulatePrepare’=>true, // needed by some MySQL installations

),

),

)

We can then access the DB connection via Yii::app()->db which is already activated au-
tomatically, unless we explictly configure CDbConnection::autoConnect to be false. Using
this approach, the single DB connection can be shared in multiple places in our code.

4.2.2 Executing SQL Statements

Once a database connection is established, SQL statements can be executed using CDb-
Command. One creates a CDbCommand instance by calling CDbConnection::createCommand()
with the specified SQL statement:

$command=$connection->createCommand($sql);

// if needed, the SQL statement may be updated as follows:

// $command->text=$newSQL;

A SQL statement is executed via CDbCommand in one of the following two ways:

• execute(): performs a non-query SQL statement, such as INSERT, UPDATE and DELETE.
If successful, it returns the number of rows that are affected by the execution.

• query(): performs an SQL statement that returns rows of data, such as SELECT.
If successful, it returns a CDbDataReader instance from which one can traverse
the resulting rows of data. For convenience, a set of queryXXX() methods are also
implemented which directly return the query results.

An exception will be raised if an error occurs during the execution of SQL statements.

$rowCount=$command->execute(); // execute the non-query SQL

$dataReader=$command->query(); // execute a query SQL

http://yiiframework.com/doc/api/CDbConnection#autoConnect
http://yiiframework.com/doc/api/CDbCommand
http://yiiframework.com/doc/api/CDbCommand
http://yiiframework.com/doc/api/CDbCommand
http://yiiframework.com/doc/api/CDbConnection#createCommand
http://yiiframework.com/doc/api/CDbCommand
http://yiiframework.com/doc/api/CDbCommand#execute
http://yiiframework.com/doc/api/CDbCommand#query
http://yiiframework.com/doc/api/CDbDataReader

58 4. Working with Databases

$rows=$command->queryAll(); // query and return all rows of result

$row=$command->queryRow(); // query and return the first row of result

$column=$command->queryColumn(); // query and return the first column of result

$value=$command->queryScalar(); // query and return the first field in the first row

4.2.3 Fetching Query Results

After CDbCommand::query() generates the CDbDataReader instance, one can retrieve
rows of resulting data by calling CDbDataReader::read() repeatedly. One can also use
CDbDataReader in PHP’s foreach language construct to retrieve row by row.

$dataReader=$command->query();

// calling read() repeatedly until it returns false

while(($row=$dataReader->read())!==false) { ... }
// using foreach to traverse through every row of data

foreach($dataReader as $row) { ... }
// retrieving all rows at once in a single array

$rows=$dataReader->readAll();

Note: Unlike query(), all queryXXX() methods return data directly. For example,
queryRow() returns an array representing the first row of the querying result.

4.2.4 Using Transactions

When an application executes a few queries, each reading and/or writing information in
the database, it is important to be sure that the database is not left with only some of
the queries carried out. A transaction, represented as a CDbTransaction instance in Yii,
may be initiated in this case:

• Begin the transaction.

• Execute queries one by one. Any updates to the database are not visible to the
outside world.

• Commit the transaction. Updates become visible if the transaction is successful.

• If one of the queries fails, the entire transaction is rolled back.

The above workflow can be implemented using the following code:

http://yiiframework.com/doc/api/CDbCommand#query
http://yiiframework.com/doc/api/CDbDataReader
http://yiiframework.com/doc/api/CDbDataReader#read
http://yiiframework.com/doc/api/CDbDataReader
http://yiiframework.com/doc/api/CDbCommand#query
http://yiiframework.com/doc/api/CDbCommand#queryRow
http://yiiframework.com/doc/api/CDbTransaction

4.2 Data Access Objects (DAO) 59

$transaction=$connection->beginTransaction();

try

{
$connection->createCommand($sql1)->execute();

$connection->createCommand($sql2)->execute();

//.... other SQL executions

$transaction->commit();

}
catch(Exception $e) // an exception is raised if a query fails

{
$transaction->rollBack();

}

4.2.5 Binding Parameters

To avoid SQL injection attacks and to improve performance of executing repeatedly used
SQL statements, one can ”prepare” an SQL statement with optional parameter place-
holders that are to be replaced with the actual parameters during the parameter binding
process.

The parameter placeholders can be either named (represented as unique tokens) or un-
named (represented as question marks). Call CDbCommand::bindParam() or CDbCom-
mand::bindValue() to replace these placeholders with the actual parameters. The param-
eters do not need to be quoted: the underlying database driver does it for you. Parameter
binding must be done before the SQL statement is executed.

// an SQL with two placeholders ":username" and ":email"

$sql="INSERT INTO users(username, email) VALUES(:username,:email)";

$command=$connection->createCommand($sql);

// replace the placeholder ":username" with the actual username value

$command->bindParam(":username",$username,PDO::PARAM STR);

// replace the placeholder ":email" with the actual email value

$command->bindParam(":email",$email,PDO::PARAM STR);

$command->execute();

// insert another row with a new set of parameters

$command->bindParam(":username",$username2,PDO::PARAM STR);

$command->bindParam(":email",$email2,PDO::PARAM STR);

$command->execute();

The methods bindParam() and bindValue() are very similar. The only difference is that
the former binds a parameter with a PHP variable reference while the latter with a value.
For parameters that represent large block of data memory, the former is preferred for
performance consideration.

For more details about binding parameters, see the relevant PHP documentation.

http://en.wikipedia.org/wiki/SQL_injection
http://yiiframework.com/doc/api/CDbCommand#bindParam
http://yiiframework.com/doc/api/CDbCommand#bindValue
http://yiiframework.com/doc/api/CDbCommand#bindValue
http://yiiframework.com/doc/api/CDbCommand#bindParam
http://yiiframework.com/doc/api/CDbCommand#bindValue
http://www.php.net/manual/en/pdostatement.bindparam.php

60 4. Working with Databases

4.2.6 Binding Columns

When fetching query results, one can also bind columns with PHP variables so that they
are automatically populated with the latest data each time a row is fetched.

$sql="SELECT username, email FROM users";

$dataReader=$connection->createCommand($sql)->query();

// bind the 1st column (username) with the $username variable

$dataReader->bindColumn(1,$username);

// bind the 2nd column (email) with the $email variable

$dataReader->bindColumn(2,$email);

while($dataReader->read()!==false)

{
// $username and $email contain the username and email in the current row

}

4.3 Active Record

Although Yii DAO can handle virtually any database-related task, chances are that we
would spend 90% of our time in writing some SQL statements which perform the common
CRUD (create, read, update and delete) operations. It is also difficult to maintain our
code when they are mixed with SQL statements. To solve these problems, we can use
Active Record.

Active Record (AR) is a popular Object-Relational Mapping (ORM) technique. Each AR
class represents a database table (or view) whose attributes are represented as the AR
class properties, and an AR instance represents a row in that table. Common CRUD
operations are implemented as AR methods. As a result, we can access our data in a more
object-oriented way. For example, we can use the following code to insert a new row to
the Post table:

$post=new Post;

$post->title=’sample post’;

$post->content=’post body content’;

$post->save();

In the following we describe how to set up AR and use it to perform CRUD operations.
We will show how to use AR to deal with database relationships in the next section. For
simplicity, we use the following database table for our examples in this section. Note that
if you are using MySQL database, you should replace AUTOINCREMENT with AUTO INCREMENT

in the following SQL.

CREATE TABLE Post (

4.3 Active Record 61

id INTEGER NOT NULL PRIMARY KEY AUTOINCREMENT,

title VARCHAR(128) NOT NULL,

content TEXT NOT NULL,

createTime INTEGER NOT NULL

);

Note: AR is not meant to solve all database-related tasks. It is best used for
modeling database tables in PHP constructs and performing queries that do not
involve complex SQLs. Yii DAO should be used for those complex scenarios.

4.3.1 Establishing DB Connection

AR relies on a DB connection to perform DB-related operations. By default, it assumes
that the db application component gives the needed CDbConnection instance which serves
as the DB connection. The following application configuration shows an example:

return array(

’components’=>array(

’db’=>array(

’class’=>’system.db.CDbConnection’,

’connectionString’=>’sqlite:path/to/dbfile’,

// turn on schema caching to improve performance

// ’schemaCachingDuration’=>3600,

),

),

);

Tip: Because Active Record relies on the metadata about tables to determine the
column information, it takes time to read the metadata and analyze it. If the schema
of your database is less likely to be changed, you should turn on schema caching
by configuring the CDbConnection::schemaCachingDuration property to be a value
greater than 0.

Support for AR is limited by DBMS. Currently, only the following DBMS are supported:

• MySQL 4.1 or later

• PostgreSQL 7.3 or later

• SQLite 2 and 3

http://yiiframework.com/doc/api/CDbConnection
http://yiiframework.com/doc/api/CDbConnection#schemaCachingDuration
http://www.mysql.com
http://www.postgres.com
http://www.sqlite.org

62 4. Working with Databases

• Microsoft SQL Server 2000 or later

• Oracle

Note: The support for Microsoft SQL Server has been available since version 1.0.4;
And the support for Oracle has been available since version 1.0.5.

If you want to use an application component other than db, or if you want to work with
multiple databases using AR, you should override CActiveRecord::getDbConnection().
The CActiveRecord class is the base class for all AR classes.

Tip: There are two ways to work with multiple databases in AR. If the schemas of
the databases are different, you may create different base AR classes with different
implementation of getDbConnection(). Otherwise, dynamically changing the static
variable CActiveRecord::db is a better idea.

4.3.2 Defining AR Class

To access a database table, we first need to define an AR class by extending CActiveRecord.
Each AR class represents a single database table, and an AR instance represents a row
in that table. The following example shows the minimal code needed for the AR class
representing the Post table.

class Post extends CActiveRecord

{
public static function model($className= CLASS)

{
return parent::model($className);

}
}

Tip: Because AR classes are often referenced in many places, we can import the
whole directory containing the AR class, instead of including them one by one. For
example, if all our AR class files are under protected/models, we can configure the
application as follows:

return array(

’import’=>array(

’application.models.*’,

),

);

http://www.microsoft.com/sqlserver/
http://www.oracle.com
http://yiiframework.com/doc/api/CActiveRecord#getDbConnection
http://yiiframework.com/doc/api/CActiveRecord
http://yiiframework.com/doc/api/CActiveRecord#getDbConnection
http://yiiframework.com/doc/api/CActiveRecord#db
http://yiiframework.com/doc/api/CActiveRecord

4.3 Active Record 63

By default, the name of the AR class is the same as the database table name. Override
the tableName() method if they are different. The model() method is declared as such for
every AR class (to be explained shortly).

Column values of a table row can be accessed as properties of the corresponding AR class
instance. For example, the following code sets the title column (attribute):

$post=new Post;

$post->title=’a sample post’;

Although we never explicitly declare the title property in the Post class, we can still
access it in the above code. This is because title is a column in the Post table, and
CActiveRecord makes it accessible as a property with the help of the PHP get() magic
method. An exception will be thrown if we attempt to access a non-existing column in
the same way.

Info: In this guide, we name columns using camel cases (e.g. createTime). This is
because columns are accessed in the way as normal object properties which also uses
camel-case naming. While using camel case does make our PHP code look more
consistent in naming, it may introduce case-sensitivity problem for some DBMS.
For example, PostgreSQL treats column names as case-insensitive by default, and
we must quote a column in a query condition if the column contains mixed-case
letters. For this reason, it may be wise to name columns (and also tables) only in
lower-case letters (e.g. create time) to avoid any potential case-sensitivity issues.

4.3.3 Creating Record

To insert a new row into a database table, we create a new instance of the corresponding
AR class, set its properties associated with the table columns, and call the save() method
to finish the insertion.

$post=new Post;

$post->title=’sample post’;

$post->content=’content for the sample post’;

$post->createTime=time();

$post->save();

If the table’s primary key is auto-incremental, after the insertion the AR instance will
contain an updated primary key. In the above example, the id property will reflect the
primary key value of the newly inserted post, even though we never change it explicitly.

http://yiiframework.com/doc/api/CActiveRecord#tableName
http://yiiframework.com/doc/api/CActiveRecord#model
http://yiiframework.com/doc/api/CActiveRecord#save

64 4. Working with Databases

If a column is defined with some static default value (e.g. a string, a number) in the
table schema, the corresponding property in the AR instance will automatically has such
a value after the instance is created. One way to change this default value is by explicitly
declaring the property in the AR class:

class Post extends CActiveRecord

{
public $title=’please enter a title’;

......

}

$post=new Post;

echo $post->title; // this would display: please enter a title

Starting from version 1.0.2, an attribute can be assigned a value of CDbExpression type
before the record is saved (either insertion or updating) to the database. For example,
in order to save a timestamp returned by the MySQL NOW() function, we can use the
following code:

$post=new Post;

$post->createTime=new CDbExpression(’NOW()’);

// $post->createTime=’NOW()’; will not work because

// ’NOW()’ will be treated as a string

$post->save();

Tip: While AR allows us to perform database operations without writing cumber-
som SQL statements, we often want to know what SQL statements are executed
by AR underneath. This can be achieved by turning on the logging feature of Yii.
For example, we can turn on CWebLogRoute in the application configuration, and
we will see the executed SQL statements being displayed at the end of each Web
page. Since version 1.0.5, we can set CDbConnection::enableParamLogging to be
true in the application configuration so that the parameter values bound to the SQL
statements are also logged.

4.3.4 Reading Record

To read data in a database table, we call one of the find methods as follows.

// find the first row satisfying the specified condition

$post=Post::model()->find($condition,$params);

// find the row with the specified primary key

http://yiiframework.com/doc/api/CDbExpression
http://yiiframework.com/doc/api/CWebLogRoute
http://yiiframework.com/doc/api/CDbConnection#enableParamLogging

4.3 Active Record 65

$post=Post::model()->findByPk($postID,$condition,$params);

// find the row with the specified attribute values

$post=Post::model()->findByAttributes($attributes,$condition,$params);

// find the first row using the specified SQL statement

$post=Post::model()->findBySql($sql,$params);

In the above, we call the find method with Post::model(). Remember that the static
method model() is required for every AR class. The method returns an AR instance that
is used to access class-level methods (something similar to static class methods) in an
object context.

If the find method finds a row satisfying the query conditions, it will return a Post

instance whose properties contain the corresponding column values of the table row. We
can then read the loaded values like we do with normal object properties, for example,
echo $post->title;.

The find method will return null if nothing can be found in the database with the given
query condition.

When calling find, we use $condition and $params to specify query conditions. Here
$condition can be string representing the WHERE clause in a SQL statement, and $params

is an array of parameters whose values should be bound to the placeholders in $condition.
For example,

// find the row with postID=10

$post=Post::model()->find(’postID=:postID’, array(’:postID’=>10));

Note: In the above, we may need to escape the reference to the postID column for
certain DBMS. For example, if we are using PostgreSQL, we would have to write the
condition as "postID"=:postID, because PostgreSQL by default will treat column
names as case-insensitive.

We can also use $condition to specify more complex query conditions. Instead of a string,
we let $condition be a CDbCriteria instance, which allows us to specify conditions other
than the WHERE clause. For example,

$criteria=new CDbCriteria;

$criteria->select=’title’; // only select the ’title’ column

$criteria->condition=’postID=:postID’;

$criteria->params=array(’:postID’=>10);

$post=Post::model()->find($criteria); // $params is not needed

http://yiiframework.com/doc/api/CDbCriteria

66 4. Working with Databases

Note, when using CDbCriteria as query condition, the $params parameter is no longer
needed since it can be specified in CDbCriteria, as shown above.

An alternative way to CDbCriteria is passing an array to the find method. The array
keys and values correspond to the criteria’s property name and value, respectively. The
above example can be rewritten as follows,

$post=Post::model()->find(array(

’select’=>’title’,

’condition’=>’postID=:postID’,

’params’=>array(’:postID’=>10),

));

Info: When a query condition is about matching some columns with the specified
values, we can use findByAttributes(). We let the $attributes parameters be an
array of the values indexed by the column names. In some frameworks, this task can
be achieved by calling methods like findByNameAndTitle. Although this approach
looks attractive, it often causes confusion, conflict and issues like case-sensitivity of
column names.

When multiple rows of data matching the specified query condition, we can bring them in
all together using the following findAll methods, each of which has its counterpart find

method, as we already described.

// find all rows satisfying the specified condition

$posts=Post::model()->findAll($condition,$params);

// find all rows with the specified primary keys

$posts=Post::model()->findAllByPk($postIDs,$condition,$params);

// find all rows with the specified attribute values

$posts=Post::model()->findAllByAttributes($attributes,$condition,$params);

// find all rows using the specified SQL statement

$posts=Post::model()->findAllBySql($sql,$params);

If nothing matches the query condition, findAll would return an empty array. This is
different from find who would return null if nothing is found.

Besides the find and findAll methods described above, the following methods are also
provided for convenience:

// get the number of rows satisfying the specified condition

$n=Post::model()->count($condition,$params);

http://yiiframework.com/doc/api/CDbCriteria
http://yiiframework.com/doc/api/CDbCriteria
http://yiiframework.com/doc/api/CDbCriteria
http://yiiframework.com/doc/api/CActiveRecord#findByAttributes

4.3 Active Record 67

// get the number of rows using the specified SQL statement

$n=Post::model()->countBySql($sql,$params);

// check if there is at least a row satisfying the specified condition

$exists=Post::model()->exists($condition,$params);

4.3.5 Updating Record

After an AR instance is populated with column values, we can change them and save them
back to the database table.

$post=Post::model()->findByPk(10);

$post->title=’new post title’;

$post->save(); // save the change to database

As we can see, we use the same save() method to perform insertion and updating opera-
tions. If an AR instance is created using the new operator, calling save() would insert a
new row into the database table; if the AR instance is the result of some find or findAll

method call, calling save() would update the existing row in the table. In fact, we can use
CActiveRecord::isNewRecord to tell if an AR instance is new or not.

It is also possible to update one or several rows in a database table without loading them
first. AR provides the following convenient class-level methods for this purpose:

// update the rows matching the specified condition

Post::model()->updateAll($attributes,$condition,$params);

// update the rows matching the specified condition and primary key(s)

Post::model()->updateByPk($pk,$attributes,$condition,$params);

// update counter columns in the rows satisfying the specified conditions

Post::model()->updateCounters($counters,$condition,$params);

In the above, $attributes is an array of column values indexed by column names; $counters
is an array of incremental values indexed by column names; and $condition and $params

are as described in the previous subsection.

4.3.6 Deleting Record

We can also delete a row of data if an AR instance has been populated with this row.

$post=Post::model()->findByPk(10); // assuming there is a post whose ID is 10

$post->delete(); // delete the row from the database table

http://yiiframework.com/doc/api/CActiveRecord#save
http://yiiframework.com/doc/api/CActiveRecord#save
http://yiiframework.com/doc/api/CActiveRecord#save
http://yiiframework.com/doc/api/CActiveRecord#isNewRecord

68 4. Working with Databases

Note, after deletion, the AR instance remains unchanged, but the corresponding row in
the database table is already gone.

The following class-level methods are provided to delete rows without the need of loading
them first:

// delete the rows matching the specified condition

Post::model()->deleteAll($condition,$params);

// delete the rows matching the specified condition and primary key(s)

Post::model()->deleteByPk($pk,$condition,$params);

4.3.7 Data Validation

When inserting or updating a row, we often need to check if the column values comply to
certain rules. This is especially important if the column values are provided by end users.
In general, we should never trust anything coming from the client side.

AR performs data validation automatically when save() is being invoked. The validation
is based on the rules specified by in the rules() method of the AR class. For more details
about how to specify validation rules, refer to the Declaring Validation Rules section.
Below is the typical workflow needed by saving a record:

if($post->save())

{
// data is valid and is successfully inserted/updated

}
else

{
// data is invalid. call getErrors() to retrieve error messages

}

When the data for inserting or updating is submitted by end users in an HTML form, we
need to assign them to the corresponding AR properties. We can do so like the following:

$post->title=$ POST[’title’];

$post->content=$ POST[’content’];

$post->save();

If there are many columns, we would see a long list of such assignments. This can be
alleviated by making use of the attributes property as shown below. More details can be
found in the Securing Attribute Assignments section and the Creating Action section.

http://yiiframework.com/doc/api/CActiveRecord#save
http://yiiframework.com/doc/api/CModel#rules
http://yiiframework.com/doc/api/CActiveRecord#attributes

4.3 Active Record 69

// assume $ POST[’Post’] is an array of column values indexed by column names

$post->attributes=$ POST[’Post’];

$post->save();

4.3.8 Comparing Records

Like table rows, AR instances are uniquely identified by their primary key values. There-
fore, to compare two AR instances, we merely need to compare their primary key val-
ues, assuming they belong to the same AR class. A simpler way is to call CActiveRe-
cord::equals(), however.

Info: Unlike AR implementation in other frameworks, Yii supports composite pri-
mary keys in its AR. A composite primary key consists of two or more columns.
Correspondingly, the primary key value is represented as an array in Yii. The
primaryKey property gives the primary key value of an AR instance.

4.3.9 Customization

CActiveRecord provides a few placeholder methods that can be overridden in child classes
to customize its workflow.

• beforeValidate and afterValidate: these are invoked before and after validation is
performed.

• beforeSave and afterSave: these are invoked before and after saving an AR instance.

• beforeDelete and afterDelete: these are invoked before and after an AR instance is
deleted.

• afterConstruct: this is invoked for every AR instance created using the new operator.

• beforeFind: this is invoked before an AR finder is used to perform a query (e.g.
find(), findAll()). This has been available since version 1.0.9.

• afterFind: this is invoked after every AR instance created as a result of query.

4.3.10 Using Transaction with AR

Every AR instance contains a property named dbConnection which is a CDbConnection
instance. We thus can use the transaction feature provided by Yii DAO if it is desired
when working with AR:

http://yiiframework.com/doc/api/CActiveRecord#equals
http://yiiframework.com/doc/api/CActiveRecord#equals
http://yiiframework.com/doc/api/CActiveRecord#primaryKey
http://yiiframework.com/doc/api/CActiveRecord
http://yiiframework.com/doc/api/CModel#beforeValidate
http://yiiframework.com/doc/api/CModel#afterValidate
http://yiiframework.com/doc/api/CActiveRecord#beforeSave
http://yiiframework.com/doc/api/CActiveRecord#afterSave
http://yiiframework.com/doc/api/CActiveRecord#beforeDelete
http://yiiframework.com/doc/api/CActiveRecord#afterDelete
http://yiiframework.com/doc/api/CActiveRecord#afterConstruct
http://yiiframework.com/doc/api/CActiveRecord#beforeFind
http://yiiframework.com/doc/api/CActiveRecord#afterFind
http://yiiframework.com/doc/api/CActiveRecord#dbConnection
http://yiiframework.com/doc/api/CDbConnection

70 4. Working with Databases

$model=Post::model();

$transaction=$model->dbConnection->beginTransaction();

try

{
// find and save are two steps which may be intervened by another request

// we therefore use a transaction to ensure consistency and integrity

$post=$model->findByPk(10);

$post->title=’new post title’;

$post->save();

$transaction->commit();

}
catch(Exception $e)

{
$transaction->rollBack();

}

4.3.11 Named Scopes

Note: The support for named scopes has been available since version 1.0.5. The
original idea of named scopes came from Ruby on Rails.

A named scope represents a named query criteria that can be combined with other named
scopes and applied to an active record query.

Named scopes are mainly declared in the CActiveRecord::scopes() method as name-criteria
pairs. The following code declares two named scopes, published and recently, in the Post

model class:

class Post extends CActiveRecord

{
......

public function scopes()

{
return array(

’published’=>array(

’condition’=>’status=1’,

),

’recently’=>array(

’order’=>’createTime DESC’,

’limit’=>5,

),

);

}
}

http://yiiframework.com/doc/api/CActiveRecord#scopes

4.3 Active Record 71

Each named scope is declared as an array which can be used to initialize a CDbCriteria
instance. For example, the recently named scope specifies that the order property to be
createTime DESC and the limit property to be 5, which translates to a query criteria that
should bring back the most recent 5 posts.

Named scopes are mostly used as modifiers to the find method calls. Several named scopes
may be chained together and result in a more restrictive query result set. For example, to
find the recently published posts, we can use the following code:

$posts=Post::model()->published()->recently()->findAll();

In general, named scopes must appear to the left of a find method call. Each of them
provides a query criteria, which is combined with other criterias, including the one passed
to the find method call. The net effect is like adding a list of filters to a query.

Starting from version 1.0.6, named scopes can also be used with update and delete meth-
ods. For example, the following code would delete all recently published posts:

Post::model()->published()->recently()->delete();

Note: Named scopes can only be used with class-level methods. That is, the
method must be called using ClassName::model().

Parameterized Named Scopes

Named scopes can be parameterized. For example, we may want to customize the number
of posts specified by the recently named scope. To do so, instead of declaring the named
scope in the CActiveRecord::scopes method, we need to define a new method whose name
is the same as the scope name:

public function recently($limit=5)

{
$this->getDbCriteria()->mergeWith(array(

’order’=>’createTime DESC’,

’limit’=>$limit,

));

return $this;

}

http://yiiframework.com/doc/api/CDbCriteria
http://yiiframework.com/doc/api/CActiveRecord#scopes

72 4. Working with Databases

Then, we can use the following statement to retrieve the 3 recently published posts:

$posts=Post::model()->published()->recently(3)->findAll();

If we do not supply the parameter 3 in the above, we would retrieve the 5 recently published
posts by default.

Default Named Scope

A model class can have a default named scope that would be applied for all queries
(including relational ones) about the model. For example, a website supporting multiple
languages may only want to display contents that are in the language the current user spec-
ifies. Because there may be many queries about the site contents, we can define a default
named scope to solve this problem. To do so, we override the CActiveRecord::defaultScope
method as follows,

class Content extends CActiveRecord

{
public function defaultScope()

{
return array(

’condition’=>"language=’".Yii::app()->language."’",

);

}
}

Now, if the following method call will automatically use the query criteria as defined above:

$contents=Content::model()->findAll();

Note that default named scope only applies to SELECT queries. It is ignored for INSERT,
UPDATE and DELETE queries.

4.4 Relational Active Record

We have already seen how to use Active Record (AR) to select data from a single database
table. In this section, we describe how to use AR to join several related database tables
and bring back the joint data set.

http://yiiframework.com/doc/api/CActiveRecord#defaultScope

4.4 Relational Active Record 73

In order to use relational AR, it is required that primary-foreign key relationships are well
defined between tables that need to be joined. AR relies on the metadata about these
relationships to determine how to join the tables.

Note: Starting from version 1.0.1, you can use relational AR even if you do not
define any foreign key constraints in your database.

For simplicity, we will use the database schema shown in the following entity-relationship
(ER) diagram to illustrate examples in this section.

Figure 4.1: ER Diagram

74 4. Working with Databases

Info: Support for foreign key constraints varies in different DBMS.

SQLite does not support foreign key constraints, but you can still declare the con-
straints when creating tables. AR can exploit these declarations to correctly support
relational queries.

MySQL supports foreign key constraints with InnoDB engine, but not with My-
ISAM. It is thus recommended that you use InnoDB for your MySQL database.
When using MyISAM, you may exploit the following trick so that you can perform
relational queries using AR:

CREATE TABLE Foo

(

id INTEGER NOT NULL PRIMARY KEY

);

CREATE TABLE bar

(

id INTEGER NOT NULL PRIMARY KEY,

fooID INTEGER

COMMENT ’CONSTRAINT FOREIGN KEY (fooID) REFERENCES Foo(id)’

);

In the above, we use COMMENT keyword to describe the foreign key constraint which
can be read by AR to recognize the described relationship.

4.4.1 Declaring Relationship

Before we use AR to perform relational query, we need to let AR know how one AR class
is related with another.

Relationship between two AR classes is directly associated with the relationship between
the database tables represented by the AR classes. From database point of view, a rela-
tionship between two tables A and B has three types: one-to-many (e.g. User and Post),
one-to-one (e.g. User and Profile) and many-to-many (e.g. Category and Post). In AR,
there are four types of relationships:

• BELONGS TO: if the relationship between table A and B is one-to-many, then B belongs
to A (e.g. Post belongs to User);

• HAS MANY: if the relationship between table A and B is one-to-many, then A has many
B (e.g. User has many Post);

• HAS ONE: this is special case of HAS MANY where A has at most one B (e.g. User has
at most one Profile);

4.4 Relational Active Record 75

• MANY MANY: this corresponds to the many-to-many relationship in database. An as-
sociative table is needed to break a many-to-many relationship into one-to-many
relationships, as most DBMS do not support many-to-many relationship directly. In
our example database schema, the PostCategory serves for this purpose. In AR ter-
minology, we can explain MANY MANY as the combination of BELONGS TO and HAS MANY.
For example, Post belongs to many Category and Category has many Post.

Declaring relationship in AR involves overriding the relations() method of CActiveRecord.
The method returns an array of relationship configurations. Each array element represents
a single relationship with the following format:

’VarName’=>array(’RelationType’, ’ClassName’, ’ForeignKey’, ...additional options)

where VarName is the name of the relationship; RelationType specifies the type of the
relationship, which can be one of the four constants: self::BELONGS TO, self::HAS ONE,
self::HAS MANY and self::MANY MANY; ClassName is the name of the AR class related to
this AR class; and ForeignKey specifies the foreign key(s) involved in the relationship.
Additional options can be specified at the end for each relationship (to be described later).

The following code shows how we declare the relationships for the User and Post classes.

class Post extends CActiveRecord

{
public function relations()

{
return array(

’author’=>array(self::BELONGS TO, ’User’, ’authorID’),

’categories’=>array(self::MANY MANY, ’Category’, ’PostCategory(postID, categoryID)’),

);

}
}

class User extends CActiveRecord

{
public function relations()

{
return array(

’posts’=>array(self::HAS MANY, ’Post’, ’authorID’),

’profile’=>array(self::HAS ONE, ’Profile’, ’ownerID’),

);

}
}

http://yiiframework.com/doc/api/CActiveRecord#relations
http://yiiframework.com/doc/api/CActiveRecord

76 4. Working with Databases

Info: A foreign key may be composite, consisting of two or more columns. In this
case, we should concatenate the names of the foreign key columns and separate them
with space or comma. For MANY MANY relationship type, the associative table name
must also be specified in the foreign key. For example, the categories relationship
in Post is specified with the foreign key PostCategory(postID, categoryID).

The declaration of relationships in an AR class implicitly adds a property to the class for
each relationship. After a relational query is performed, the corresponding property will
be populated with the related AR instance(s). For example, if $author represents a User

AR instance, we can use $author->posts to access its related Post instances.

4.4.2 Performing Relational Query

The simplest way of performing relational query is by reading a relational property of
an AR instance. If the property is not accessed previously, a relational query will be
initiated, which joins the two related tables and filters with the primary key of the current
AR instance. The query result will be saved to the property as instance(s) of the related
AR class. This is known as the lazy loading approach, i.e., the relational query is performed
only when the related objects are initially accessed. The example below shows how to use
this approach:

// retrieve the post whose ID is 10

$post=Post::model()->findByPk(10);

// retrieve the post’s author: a relational query will be performed here

$author=$post->author;

Info: If there is no related instance for a relationship, the corresponding property
could be either null or an empty array. For BELONGS TO and HAS ONE relationships,
the result is null; for HAS MANY and MANY MANY, it is an empty array. Note that the
HAS MANY and MANY MANY relationships return arrays of objects, you will need to
loop through the results before trying to access any properties. Otherwise, you may
receive ”Trying to get property of non-object” errors.

The lazy loading approach is very convenient to use, but it is not efficient in some scenarios.
For example, if we want to access the author information for N posts, using the lazy
approach would involve executing N join queries. We should resort to the so-called eager
loading approach under this circumstance.

4.4 Relational Active Record 77

The eager loading approach retrieves the related AR instances together with the main AR
instance(s). This is accomplished by using the with() method together with one of the
find or findAll methods in AR. For example,

$posts=Post::model()->with(’author’)->findAll();

The above code will return an array of Post instances. Unlike the lazy approach, the
author property in each Post instance is already populated with the related User instance
before we access the property. Instead of executing a join query for each post, the eager
loading approach brings back all posts together with their authors in a single join query!

We can specify multiple relationship names in the with() method and the eager loading
approach will bring them back all in one shot. For example, the following code will bring
back posts together with their authors and categories:

$posts=Post::model()->with(’author’,’categories’)->findAll();

We can also do nested eager loading. Instead of a list of relationship names, we pass in a
hierarchical representation of relationship names to the with() method, like the following,

$posts=Post::model()->with(

’author.profile’,

’author.posts’,

’categories’)->findAll();

The above example will bring back all posts together with their author and categories. It
will also bring back each author’s profile and posts.

Note: The usage of the with() method has been changed since version 1.0.2. Please
read the corresponding API documentation carefully.

The AR implementation in Yii is very efficient. When eager loading a hierarchy of related
objects involving N HAS MANY or MANY MANY relationships, it will take N+1 SQL queries to
obtain the needed results. This means it needs to execute 3 SQL queries in the last
example because of the posts and categories properties. Other frameworks take a more
radical approach by using only one SQL query. At first look, the radical approach seems
more efficient because fewer queries are being parsed and executed by DBMS. It is in fact
impractical in reality for two reasons. First, there are many repetitive data columns in

http://yiiframework.com/doc/api/CActiveRecord#with
http://yiiframework.com/doc/api/CActiveRecord#find
http://yiiframework.com/doc/api/CActiveRecord#findAll
http://yiiframework.com/doc/api/CActiveRecord#with
http://yiiframework.com/doc/api/CActiveRecord#with
http://yiiframework.com/doc/api/CActiveRecord#with

78 4. Working with Databases

the result which takes extra time to transmit and process. Second, the number of rows
in the result set grows exponentially with the number of tables involved, which makes it
simply unmanageable as more relationships are involved.

Since version 1.0.2, you can also enforce the relational query to be done with only one
SQL query. Simply append a together() call after with(). For example,

$posts=Post::model()->with(

’author.profile’,

’author.posts’,

’categories’)->together()->findAll();

The above query will be done in one SQL query. Without calling together, this will need
three SQL queries: one joins Post, User and Profile tables, one joins User and Post tables,
and one joins Post, PostCategory and Category tables.

4.4.3 Relational Query Options

We mentioned that additional options can be specified in relationship declaration. These
options, specified as name-value pairs, are used to customize the relational query. They
are summarized as below.

• select: a list of columns to be selected for the related AR class. It defaults to ’*’,
meaning all columns. Column names should be disambiguated using aliasToken if
they appear in an expression (e.g. COUNT(??.name) AS nameCount).

• condition: the WHERE clause. It defaults to empty. Note, column references need to
be disambiguated using aliasToken (e.g. ??.id=10).

• params: the parameters to be bound to the generated SQL statement. This should
be given as an array of name-value pairs. This option has been available since version
1.0.3.

• on: the ON clause. The condition specified here will be appended to the joining
condition using the AND operator. Note, column references need to be disambiguated
using aliasToken (e.g. ??.id=10). This option does not apply to MANY MANY relations.
This option has been available since version 1.0.2.

• order: the ORDER BY clause. It defaults to empty. Note, column references need to
be disambiguated using aliasToken (e.g. ??.age DESC).

• with: a list of child related objects that should be loaded together with this object.
Be aware that using this option inappropriately may form an infinite relation loop.

http://yiiframework.com/doc/api/CActiveFinder#together
http://yiiframework.com/doc/api/CActiveRecord#with
http://yiiframework.com/doc/api/CActiveFinder#together

4.4 Relational Active Record 79

• joinType: type of join for this relationship. It defaults to LEFT OUTER JOIN.

• aliasToken: the column prefix placeholder. It will be replaced by the corresponding
table alias to disambiguate column references. It defaults to ’??.’.

• alias: the alias for the table associated with this relationship. This option has
been available since version 1.0.1. It defaults to null, meaning the table alias is
automatically generated. This is different from aliasToken in that the latter is just
a placeholder and will be replaced by the actual table alias.

• together: whether the table associated with this relationship should be forced to join
together with the primary table. This option is only meaningful for HASMANY andMANYMANY relations.Ifthisoptionisnotsetorfalse, eachHASMANY orMANYMANY relationwillhavetheirownJOINstatementtoimproveperformance.Thisoptionhasbeenavailablesinceversion1.0.3.group :
theGROUP BYclause.Itdefaultstoempty.Note, columnreferencesneedtobedisambiguatedusingaliasToken(e.g.??.age).

•• having: the HAVING clause. It defaults to empty. Note, column references need to be
disambiguated using aliasToken (e.g. ??.age). Note: option has been available since
version 1.0.1.

• index: the name of the column whose values should be used as keys of the array that stores
related objects. Without setting this option, an related object array would use zero-based
integer index. This option can only be set for HAS MANY and MANY MANY relations. This
option has been available since version 1.0.7.

In addition, the following options are available for certain relationships during lazy loading:

• limit: limit of the rows to be selected. This option does NOT apply to BELONGS TO

relation.

• offset: offset of the rows to be selected. This option does NOT apply to BELONGS TO

relation.

Below we modify the posts relationship declaration in the User by including some of the
above options:

class User extends CActiveRecord

{
public function relations()

{
return array(

’posts’=>array(self::HAS MANY, ’Post’, ’authorID’,

’order’=>’??.createTime DESC’,

’with’=>’categories’),

’profile’=>array(self::HAS ONE, ’Profile’, ’ownerID’),

80 4. Working with Databases

);

}
}

Now if we access $author->posts, we would obtain the author’s posts sorted according to
their creation time in descending order. Each post instance also has its categories loaded.

Info: When a column name appears in two or more tables being joined together, it
needs to be disambiguated. This is done by prefixing the column name with its table
name. For example, id becomes Team.id. In AR relational queries, however, we
do not have this freedom because the SQL statements are automatically generated
by AR which systematically gives each table an alias. Therefore, in order to avoid
column name conflict, we use a placeholder to indicate the existence of a column
which needs to be disambiguated. AR will replace the placeholder with a suitable
table alias and properly disambiguate the column.

4.4.4 Dynamic Relational Query Options

Starting from version 1.0.2, we can use dynamic relational query options in both with()
and the with option. The dynamic options will overwrite existing options as specified in
the relations() method. For example, with the above User model, if we want to use eager
loading approach to bring back posts belonging to an author in ascending order (the order

option in the relation specification is descending order), we can do the following:

User::model()->with(array(

’posts’=>array(’order’=>’??.createTime ASC’),

’profile’,

))->findAll();

Starting from version 1.0.5, dynamic query options can also be used when using the lazy
loading approach to perform relational query. To do so, we should call a method whose
name is the same as the relation name and pass the dynamic query options as the method
parameter. For example, the following code returns a user’s posts whose status is 1:

$user=User::model()->findByPk(1);

$posts=$user->posts(array(’condition’=>’status=1’));

4.4.5 Statistical Query

Note: Statistical query has been supported since version 1.0.4.

http://yiiframework.com/doc/api/CActiveRecord#with
http://yiiframework.com/doc/api/CActiveRecord#relations

4.4 Relational Active Record 81

Besides the relational query described above, Yii also supports the so-called statistical
query (or aggregational query). It refers to retrieving the aggregational information about
the related objects, such as the number of comments for each post, the average rating for
each product, etc. Statistical query can only be performed for objects related in HAS MANY

(e.g. a post has many comments) or MANY MANY (e.g. a post belongs to many categories
and a category has many posts).

Performing statistical query is very similar to performing relation query as we described
before. We first need to declare the statistical query in the relations() method of CAc-
tiveRecord like we do with relational query.

class Post extends CActiveRecord

{
public function relations()

{
return array(

’commentCount’=>array(self::STAT, ’Comment’, ’postID’),

’categoryCount’=>array(self::STAT, ’Category’, ’PostCategory(postID, categoryID)’),

);

}
}

In the above, we declare two statistical queries: commentCount calculates the number of
comments belonging to a post, and categoryCount calculates the number of categories
that a post belongs to. Note that the relationship between Post and Comment is HAS

MANY, while the relationship between Post and Category is MANY MANY (with the joining
table PostCategory). As we can see, the declaration is very similar to those relations we
described in earlier subsections. The only difference is that the relation type is STAT here.

With the above declaration, we can retrieve the number of comments for a post using
the expression $post->commentCount. When we access this property for the first time,
a SQL statement will be executed implicitly to retrieve the corresponding result. As we
already know, this is the so-called lazy loading approach. We can also use the eager loading
approach if we need to determine the comment count for multiple posts:

$posts=Post::model()->with(’commentCount’, ’categoryCount’)->findAll();

The above statement will execute three SQLs to bring back all posts together with their
comment counts and category counts. Using the lazy loading approach, we would end up
with 2*N+1 SQL queries if there are N posts.

By default, a statistical query will calculate the COUNT expression (and thus the comment
count and category count in the above example). We can customize it by specifying

http://yiiframework.com/doc/api/CActiveRecord#relations
http://yiiframework.com/doc/api/CActiveRecord
http://yiiframework.com/doc/api/CActiveRecord

82 4. Working with Databases

additional options when we declare it in relations(). The available options are summarized
as below.

• select: the statistical expression. Defaults to COUNT(*), meaning the count of child
objects.

• defaultValue: the value to be assigned to those records that do not receive a statisti-
cal query result. For example, if a post does not have any comments, its commentCount
would receive this value. The default value for this option is 0.

• condition: the WHERE clause. It defaults to empty.

• params: the parameters to be bound to the generated SQL statement. This should
be given as an array of name-value pairs.

• order: the ORDER BY clause. It defaults to empty.

• group: the GROUP BY clause. It defaults to empty.

• having: the HAVING clause. It defaults to empty.

4.4.6 Relational Query with Named Scopes

Note: The support for named scopes has been available since version 1.0.5.

Relational query can also be performed in combination with named scopes. It comes in
two forms. In the first form, named scopes are applied to the main model. In the second
form, named scopes are applied to the related models.

The following code shows how to apply named scopes to the main model.

$posts=Post::model()->published()->recently()->with(’comments’)->findAll();

This is very similar to non-relational queries. The only difference is that we have the
with() call after the named-scope chain. This query would bring back recently published
posts together with their comments.

And the following code shows how to apply named scopes to the related models.

$posts=Post::model()->with(’comments:recently:approved’)->findAll();

http://yiiframework.com/doc/api/CActiveRecord#relations

4.4 Relational Active Record 83

The above query will bring back all posts together with their approved comments. Note
that comments refers to the relation name, while recently and approved refer to two named
scopes declared in the Comment model class. The relation name and the named scopes
should be separated by colons.

Named scopes can also be specified in the with option of the relational rules declared in
CActiveRecord::relations(). In the following example, if we access $user->posts, it would
bring back all approved comments of the posts.

class User extends CActiveRecord

{
public function relations()

{
return array(

’posts’=>array(self::HAS MANY, ’Post’, ’authorID’,

’with’=>’comments:approved’),

);

}
}

Note: Named scopes applied to related models must be specified in CActiveRe-
cord::scopes. As a result, they cannot be parameterized.

http://yiiframework.com/doc/api/CActiveRecord#relations
http://yiiframework.com/doc/api/CActiveRecord#scopes
http://yiiframework.com/doc/api/CActiveRecord#scopes

84 4. Working with Databases

Chapter 5

Caching

5.1 Caching

Caching is a cheap and effective way to improve the performance of a Web application.
By storing relatively static data in cache and serving it from cache when requested, we
save the time needed to generate the data.

Using cache in Yii mainly involves configuring and accessing a cache application com-
ponent. The following application configuration specifies a cache component that uses
memcache with two cache servers.

array(

......

’components’=>array(

......

’cache’=>array(

’class’=>’system.caching.CMemCache’,

’servers’=>array(

array(’host’=>’server1’, ’port’=>11211, ’weight’=>60),

array(’host’=>’server2’, ’port’=>11211, ’weight’=>40),

),

),

),

);

When the application is running, the cache component can be accessed via Yii::app()->cache.

Yii provides various cache components that can store cached data in different medium.
For example, the CMemCache component encapsulates the PHP memcache extension and
uses memory as the medium of cache storage; the CApcCache component encapsulates
the PHP APC extension; and the CDbCache component stores cached data in database.
The following is a summary of the available cache components:

• CMemCache: uses PHP memcache extension.

http://yiiframework.com/doc/api/CMemCache
http://yiiframework.com/doc/api/CApcCache
http://yiiframework.com/doc/api/CDbCache
http://yiiframework.com/doc/api/CMemCache
http://www.php.net/manual/en/book.memcache.php

86 5. Caching

• CApcCache: uses PHP APC extension.

• CXCache: uses PHP XCache extension. Note, this has been available since version
1.0.1.

• CEAcceleratorCache: uses PHP EAccelerator extension.

• CDbCache: uses a database table to store cached data. By default, it will create
and use a SQLite3 database under the runtime directory. You can explicitly specify
a database for it to use by setting its connectionID property.

• CZendDataCache: uses Zend Data Cache as the underlying caching medium. Note,
this has been available since version 1.0.4.

• CFileCache: uses files to store cached data. This is particular suitable to cache large
chunk of data (such as pages). Note that this has been available since version 1.0.6.

• CDummyCache: presents dummy cache that does no caching at all. The purpose of
this component is to simplify the code that needs to check the availability of cache.
For example, during development or if the server doesn’t have actual cache support,
we can use this cache component. When an actual cache support is enabled, we
can switch to use the corresponding cache component. In both cases, we can use
the same code Yii::app()->cache->get($key) to attempt retrieving a piece of data
without worrying that Yii::app()->cache might be null. This component has been
available since version 1.0.5.

Tip: Because all these cache components extend from the same base class CCache,
one can switch to use a different type of cache without modifying the code that uses
cache.

Caching can be used at different levels. At the lowest level, we use cache to store a single
piece of data, such as a variable, and we call this data caching. At the next level, we store
in cache a page fragment which is the generated by a portion of a view script. And at the
highest level, we store a whole page in cache and serve it from cache as needed.

In the next few subsections, we elaborate how to use cache at these levels.

Note: By definition, cache is a volatile storage medium. It does not ensure the
existence of the cached data even if it does not expire. Therefore, do not use cache
as a persistent storage (e.g. do not use cache to store session data).

http://yiiframework.com/doc/api/CApcCache
http://www.php.net/manual/en/book.apc.php
http://yiiframework.com/doc/api/CXCache
http://xcache.lighttpd.net/
http://yiiframework.com/doc/api/CEAcceleratorCache
http://eaccelerator.net/
http://yiiframework.com/doc/api/CDbCache
http://yiiframework.com/doc/api/CDbCache#connectionID
http://yiiframework.com/doc/api/CZendDataCache
http://yiiframework.com/doc/api/CFileCache
http://yiiframework.com/doc/api/CDummyCache
http://yiiframework.com/doc/api/CCache

5.2 Data Caching 87

5.2 Data Caching

Data caching is about storing some PHP variable in cache and retrieving it later from
cache. For this purpose, the cache component base class CCache provides two methods
that are used in most of the time: set() and get().

To store a variable $value in cache, we choose a unique ID and call set() to store it:

Yii::app()->cache->set($id, $value);

The cached data will remain in the cache forever unless it is removed because of some
caching policy (e.g. caching space is full and the oldest data are removed). To change this
behavior, we can also supply an expiration parameter when calling set() so that the data
will be removed from the cache after a certain period of time:

// keep the value in cache for at most 30 seconds

Yii::app()->cache->set($id, $value, 30);

Later when we need to access this variable (in either the same or a different Web request),
we call get() with the ID to retrieve it from cache. If the value returned is false, it means
the value is not available in cache and we should regenerate it.

$value=Yii::app()->cache->get($id);

if($value===false)

{
// regenerate $value because it is not found in cache

// and save it in cache for later use:

// Yii::app()->cache->set($id,$value);

}

When choosing the ID for a variable to be cached, make sure the ID is unique among
all other variables that may be cached in the application. It is NOT required that the
ID is unique across applications because the cache component is intelligent enough to
differentiate IDs for different applications.

Some cache storages, such as MemCache, APC, support retrieving multiple cached values
in a batch mode, which may reduce the overhead involved in retrieving cached data.
Starting from version 1.0.8, a new method named mget() is provided to exploit this feature.
In case the underlying cache storage does not support this feature, mget() will still simulate
it.

http://yiiframework.com/doc/api/CCache
http://yiiframework.com/doc/api/CCache#set
http://yiiframework.com/doc/api/CCache#get
http://yiiframework.com/doc/api/CCache#set
http://yiiframework.com/doc/api/CCache#set
http://yiiframework.com/doc/api/CCache#get
http://yiiframework.com/doc/api/CCache#mget
http://yiiframework.com/doc/api/CCache#mget

88 5. Caching

To remove a cached value from cache, call delete(); and to remove everything from cache,
call flush(). Be very careful when calling flush() because it also removes cached data that
are from other applications.

Tip: Because CCache implements ArrayAccess, a cache component can be used
liked an array. The followings are some examples:

$cache=Yii::app()->cache;

$cache[’var1’]=$value1; // equivalent to: $cache->set(’var1’,$value1);

$value2=$cache[’var2’]; // equivalent to: $value2=$cache->get(’var2’);

5.2.1 Cache Dependency

Besides expiration setting, cached data may also be invalidated according to some depen-
dency changes. For example, if we are caching the content of some file and the file is
changed, we should invalidate the cached copy and read the latest content from the file
instead of the cache.

We represent a dependency as an instance of CCacheDependency or its child class. We
pass the dependency instance along with the data to be cached when calling set().

// the value will expire in 30 seconds

// it may also be invalidated earlier if the dependent file is changed

Yii::app()->cache->set($id, $value, 30, new CFileCacheDependency(’FileName’));

Now if we retrieve $value from cache by calling get(), the dependency will be evaluated
and if it is changed, we will get a false value, indicating the data needs to be regenerated.

Below is a summary of the available cache dependencies:

• CFileCacheDependency: the dependency is changed if the file’s last modification
time is changed.

• CDirectoryCacheDependency: the dependency is changed if any of the files under
the directory and its subdirectories is changed.

• CDbCacheDependency: the dependency is changed if the query result of the specified
SQL statement is changed.

• CGlobalStateCacheDependency: the dependency is changed if the value of the spec-
ified global state is changed. A global state is a variable that is persistent across
multiple requests and multiple sessions in an application. It is defined via CAppli-
cation::setGlobalState().

http://yiiframework.com/doc/api/CCache#delete
http://yiiframework.com/doc/api/CCache#flush
http://yiiframework.com/doc/api/CCache#flush
http://yiiframework.com/doc/api/CCache
http://yiiframework.com/doc/api/CCacheDependency
http://yiiframework.com/doc/api/CCache#set
http://yiiframework.com/doc/api/CCache#get
http://yiiframework.com/doc/api/CFileCacheDependency
http://yiiframework.com/doc/api/CDirectoryCacheDependency
http://yiiframework.com/doc/api/CDbCacheDependency
http://yiiframework.com/doc/api/CGlobalStateCacheDependency
http://yiiframework.com/doc/api/CApplication#setGlobalState
http://yiiframework.com/doc/api/CApplication#setGlobalState

5.3 Fragment Caching 89

• CChainedCacheDependency: the dependency is changed if any of the dependencies
on the chain is changed.

• CExpressionDependency: the dependency is changed if the result of the specified
PHP expression is changed. This class has been available since version 1.0.4.

5.3 Fragment Caching

Fragment caching refers to caching a fragment of a page. For example, if a page displays
a summary of yearly sale in a table, we can store this table in cache to eliminate the time
needed to generate it for each request.

To use fragment caching, we call CController::beginCache() and CController::endCache()
in a controller’s view script. The two methods mark the beginning and the end of the page
content that should be cached, respectively. Like data caching, we need an ID to identify
the fragment being cached.

...other HTML content...

<?php if($this->beginCache($id)) { ?>

...content to be cached...

<?php $this->endCache(); } ?>

...other HTML content...

In the above, if beginCache() returns false, the cached content will be automatically in-
serted at the place; otherwise, the content inside the if-statement will be executed and
be cached when endCache() is invoked.

5.3.1 Caching Options

When calling beginCache(), we can supply an array as the second parameter consisting
of caching options to customize the fragment caching. As a matter of fact, the begin-
Cache() and endCache() methods are a convenient wrapper of the COutputCache widget.
Therefore, the caching options can be initial values for any properties of COutputCache.

Duration

Perhaps the most commonly option is duration which specifies how long the content can
remain valid in cache. It is similar to the expiration parameter of CCache::set(). The
following code caches the content fragment for at most one hour:

...other HTML content...

http://yiiframework.com/doc/api/CChainedCacheDependency
http://yiiframework.com/doc/api/CExpressionDependency
http://yiiframework.com/doc/api/CBaseController#beginCache
http://yiiframework.com/doc/api/CBaseController#endCache
http://yiiframework.com/doc/api/CBaseController#beginCache
http://yiiframework.com/doc/api/CBaseController#endCache
http://yiiframework.com/doc/api/CBaseController#beginCache
http://yiiframework.com/doc/api/CBaseController#beginCache
http://yiiframework.com/doc/api/CBaseController#beginCache
http://yiiframework.com/doc/api/CBaseController#endCache
http://yiiframework.com/doc/api/COutputCache
http://yiiframework.com/doc/api/COutputCache
http://yiiframework.com/doc/api/COutputCache#duration
http://yiiframework.com/doc/api/CCache#set

90 5. Caching

<?php if($this->beginCache($id, array(’duration’=>3600))) { ?>

...content to be cached...

<?php $this->endCache(); } ?>

...other HTML content...

If we do not set the duration, it would default to 60, meaning the cached content will be
invalidated after 60 seconds.

Dependency

Like data caching, content fragment being cached can also have dependencies. For exam-
ple, the content of a post being displayed depends on whether or not the post is modified.

To specify a dependency, we set the dependency option, which can be either an object
implementing ICacheDependency or a configuration array that can be used to generate
the dependency object. The following code specifies the fragment content depends on the
change of lastModified column value:

...other HTML content...

<?php if($this->beginCache($id, array(’dependency’=>array(

’class’=>’system.caching.dependencies.CDbCacheDependency’,

’sql’=>’SELECT MAX(lastModified) FROM Post’)))) { ?>

...content to be cached...

<?php $this->endCache(); } ?>

...other HTML content...

Variation

Content being cached may be variated according to some parameters. For example, the
personal profile may look differently to different users. To cache the profile content, we
would like the cached copy to be variated according to user IDs. This essentially means
that we should use different IDs when calling beginCache().

Instead of asking developers to variate the IDs according to some scheme, COutputCache
is built-in with such a feature. Below is a summary.

• varyByRoute: by setting this option to true, the cached content will be variated
according to route. Therefore, each combination of the requested controller and
action will have a separate cached content.

http://yiiframework.com/doc/api/COutputCache#dependency
http://yiiframework.com/doc/api/ICacheDependency
http://yiiframework.com/doc/api/CBaseController#beginCache
http://yiiframework.com/doc/api/COutputCache
http://yiiframework.com/doc/api/CoutputCache#varyByRoute

5.3 Fragment Caching 91

• varyBySession: by setting this option to true, we can make the cached content to
be variated according to session IDs. Therefore, each user session may see different
content and they are all served from cache.

• varyByParam: by setting this option to an array of names, we can make the cached
content to be variated according to the values of the specified GET parameters. For
example, if a page displays the content of a post according to the id GET parameter,
we can specify varyByParam to be array(’id’) so that we can cache the content for
each post. Without such variation, we would only be able to cache a single post.

• varyByExpression: by setting this option to a PHP expression, we can make the
cached content to be variated according to the result of this PHP expression. This
option has been available since version 1.0.4.

Request Types

Sometimes we want the fragment caching to be enabled only for certain types of request.
For example, for a page displaying a form, we only want to cache the form when it is
initially requested (via GET request). Any subsequent display (via POST request) of the
form should not be cached because the form may contain user input. To do so, we can
specify the requestTypes option:

...other HTML content...

<?php if($this->beginCache($id, array(’requestTypes’=>array(’GET’)))) { ?>

...content to be cached...

<?php $this->endCache(); } ?>

...other HTML content...

5.3.2 Nested Caching

Fragment caching can be nested. That is, a cached fragment is enclosed within a bigger
fragment that is also cached. For example, the comments are cached in an inner fragment
cache, and they are cached together with the post content in an outer fragment cache.

...other HTML content...

<?php if($this->beginCache($id1)) { ?>

...outer content to be cached...

<?php if($this->beginCache($id2)) { ?>

...inner content to be cached...

<?php $this->endCache(); } ?>

...outer content to be cached...

<?php $this->endCache(); } ?>

...other HTML content...

http://yiiframework.com/doc/api/COutputCache#varyBySession
http://yiiframework.com/doc/api/COutputCache#varyByParam
http://yiiframework.com/doc/api/COutputCache#varyByParam
http://yiiframework.com/doc/api/COutputCache#varyByExpression
http://yiiframework.com/doc/api/COutputCache#requestTypes

92 5. Caching

Different caching options can be set to the nested caches. For example, the inner cache
and the outer cache in the above example can be set with different duration values. When
the data cached in the outer cache is invalidated, the inner cache may still provide valid
inner fragment. However, it is not true vice versa. If the outer cache contains valid data,
it will always provide the cached copy, even though the content in the inner cache already
expires.

5.4 Page Caching

Page caching refers to caching the content of a whole page. Page caching can occur at
different places. For example, by choosing an appropriate page header, the client browser
may cache the page being viewed for a limited time. The Web application itself can also
store the page content in cache. In this subsection, we focus on this latter approach.

Page caching can be considered as a special case of fragment caching. Because the content
of a page is often generated by applying a layout to a view, it will not work if we simply call
beginCache() and endCache() in the layout. The reason is because the layout is applied
within the CController::render() method AFTER the content view is evaluated.

To cache a whole page, we should skip the execution of the action generating the page
content. We can use COutputCache as an action filter to accomplish this task. The
following code shows how we configure the cache filter:

public function filters()

{
return array(

array(

’COutputCache’,

’duration’=>100,

’varyByParam’=>array(’id’),

),

);

}

The above filter configuration would make the filter to be applied to all actions in the
controller. We may limit it to one or a few actions only by using the plus operator. More
details can be found in filter.

http://yiiframework.com/doc/api/CBaseController#beginCache
http://yiiframework.com/doc/api/CBaseController#endCache
http://yiiframework.com/doc/api/CController#render
http://yiiframework.com/doc/api/COutputCache

5.5 Dynamic Content 93

Tip: We can use COutputCache as a filter because it extends from CFilterWidget,
which means it is both a widget and a filter. In fact, the way a widget works is
very similar to a filter: a widget (filter) begins before any enclosed content (ac-
tion) is evaluated, and the widget (filter) ends after the enclosed content (action) is
evaluated.

5.5 Dynamic Content

When using fragment caching or page caching, we often encounter the situation where the
whole portion of the output is relatively static except at one or several places. For example,
a help page may display static help information with the name of the user currently logged
in displayed at the top.

To solve this issue, we can variate the cache content according to the username, but
this would be a big waste of our precious cache space since most content are the same
except the username. We can also divide the page into several fragments and cache them
individually, but this complicates our view and makes our code very complex. A better
approach is to use the dynamic content feature provided by CController.

A dynamic content means a fragment of output that should not be cached even if it is
enclosed within a fragment cache. To make the content dynamic all the time, it has to
be generated every time even when the enclosing content is being served from cache. For
this reason, we require that dynamic content be generated by some method or function.

We call CController::renderDynamic() to insert dynamic content at the desired place.

...other HTML content...

<?php if($this->beginCache($id)) { ?>

...fragment content to be cached...

<?php $this->renderDynamic($callback); ?>

...fragment content to be cached...

<?php $this->endCache(); } ?>

...other HTML content...

In the above, $callback refers to a valid PHP callback. It can be a string referring to
the name of a method in the current controller class or a global function. It can also be
an array referring to a class method. Any additional parameters to renderDynamic() will
be passed to the callback. The callback should return the dynamic content instead of
displaying it.

http://yiiframework.com/doc/api/COutputCache
http://yiiframework.com/doc/api/CFilterWidget
http://yiiframework.com/doc/api/CController
http://yiiframework.com/doc/api/CController#renderDynamic
http://yiiframework.com/doc/api/CController#renderDynamic

94 5. Caching

Chapter 6

Extending Yii

6.1 Overview

Extending Yii is a common activity during development. For example, when you write a
new controller, you extend Yii by inheriting its CController class; when you write a new
widget, you are extending CWidget or an existing widget class. If the extended code is
designed to be reused by third-party developers, we call it an extension.

An extension usually serves for a single purpose. In Yii’s terms, it can be classified as
follows,

• application component

• behavior

• widget

• controller

• action

• filter

• console command

• validator: a validator is a component class extending CValidator.

• helper: a helper is a class with only static methods. It is like global functions using
the class name as their namespace.

• module: a module is a self-contained software unit that consists of models, views,
controllers and other supporting components. In many aspects, a module resembles
to an application. The main difference is that a module is inside an application. For
example, we could have a module that provides user management functionalities.

http://yiiframework.com/doc/api/CController
http://yiiframework.com/doc/api/CWidget
http://yiiframework.com/doc/api/CValidator

96 6. Extending Yii

An extension can also be a component that does not fall into any of the above categories.
As a matter of fact, Yii is carefully designed such that nearly every piece of its code can
be extended and customized to fit for individual needs.

6.2 Using Extensions

Using an extension usually involves the following three steps:

1. Download the extension from Yii’s extension repository.

2. Unpack the extension under the extensions/xyz subdirectory of application base
directory, where xyz is the name of the extension.

3. Import, configure and use the extension.

Each extension has a name that uniquely identifies it among all extensions. Given an
extension named as xyz, we can always use the path alias ext.xyz to locate its base
directory which contains all files of xyz.

Note: The root path alias ext has been available since version 1.0.8. Previously,
we would need to use application.extensions to refer to the directory containing
all extensions. In the following description, we assume ext is defined. You will need
to replace it with application.extensions if you are using version 1.0.7 or lower.

Different extensions have different requirements about importing, configuration and usage.
In the following, we summarize common usage scenarios about extensions, according to
their categorization described in the overview.

6.2.1 Application Component

To use an application component, we first need to change the application configuration by
adding a new entry to its components property, like the following:

return array(

// ’preload’=>array(’xyz’,...),

’components’=>array(

’xyz’=>array(

’class’=>’ext.xyz.XyzClass’,

’property1’=>’value1’,

’property2’=>’value2’,

http://www.yiiframework.com/extensions/

6.2 Using Extensions 97

),

// other component configurations

),

);

Then, we can access the component at any place using Yii::app()->xyz. The component
will be lazily created (that is, created when it is accessed for the first time) unless we list
it the preload property.

6.2.2 Behavior

Behavior can be used in all sorts of components. Its usage involves two steps. In the first
step, a behavior is attached to a target component. In the second step, a behavior method
is called via the target component. For example:

// $name uniquely identifies the behavior in the component

$component->attachBehavior($name,$behavior);

// test() is a method of $behavior

$component->test();

More often, a behavior is attached to a component using a configurative way instead of
calling the attachBehavior method. For example, to attach a behavior to an application
component, we could use the following application configuration:

return array(

’components’=>array(

’db’=>array(

’class’=>’CDbConnection’,

’behaviors’=>array(

’xyz’=>array(

’class’=>’ext.xyz.XyzBehavior’,

’property1’=>’value1’,

’property2’=>’value2’,

),

),

),

//....

),

);

The above code attaches the xyz behavior to the db application component. We can do
so because CApplicationComponent defines a property named behaviors. By setting this

http://yiiframework.com/doc/api/CApplicationComponent

98 6. Extending Yii

property with a list of behavior configurations, the component will attach the correspond-
ing behaviors when it is being initialized.

For CController, CFormModel and CActiveModel classes which usually need to be ex-
tended, attaching behaviors is done by overriding their behaviors() method. For example,

public function behaviors()

{
return array(

’xyz’=>array(

’class’=>’ext.xyz.XyzBehavior’,

’property1’=>’value1’,

’property2’=>’value2’,

),

);

}

6.2.3 Widget

Widgets are mainly used in views. Given a widget class XyzClass belonging to the xyz

extension, we can use it in a view as follows,

// widget that does not need body content

<?php $this->widget(’ext.xyz.XyzClass’, array(

’property1’=>’value1’,

’property2’=>’value2’)); ?>

// widget that can contain body content

<?php $this->beginWidget(’ext.xyz.XyzClass’, array(

’property1’=>’value1’,

’property2’=>’value2’)); ?>

...body content of the widget...

<?php $this->endWidget(); ?>

6.2.4 Action

Actions are used by a controller to respond specific user requests. Given an action
class XyzClass belonging to the xyz extension, we can use it by overriding the CCon-
troller::actions method in our controller class:

class TestController extends CController

{

http://yiiframework.com/doc/api/CController
http://yiiframework.com/doc/api/CFormModel
http://yiiframework.com/doc/api/CActiveModel
http://yiiframework.com/doc/api/CController#actions
http://yiiframework.com/doc/api/CController#actions

6.2 Using Extensions 99

public function actions()

{
return array(

’xyz’=>array(

’class’=>’ext.xyz.XyzClass’,

’property1’=>’value1’,

’property2’=>’value2’,

),

// other actions

);

}
}

Then, the action can be accessed via route test/xyz.

6.2.5 Filter

Filters are also used by a controller. Their mainly pre- and post-process the user re-
quest when it is handled by an action. Given a filter class XyzClass belonging to the xyz

extension, we can use it by overriding the CController::filters method in our controller
class:

class TestController extends CController

{
public function filters()

{
return array(

array(

’ext.xyz.XyzClass’,

’property1’=>’value1’,

’property2’=>’value2’,

),

// other filters

);

}
}

In the above, we can use plus and minus operators in the first array element to apply
the filter to limited actions only. For more details, please refer to the documentation of
CController.

6.2.6 Controller

A controller provides a set of actions that can be requested by users. In order to use a
controller extension, we need to configure the CWebApplication::controllerMap property

http://yiiframework.com/doc/api/CController#filters
http://yiiframework.com/doc/api/CController
http://yiiframework.com/doc/api/CWebApplication#controllerMap

100 6. Extending Yii

in the application configuration:

return array(

’controllerMap’=>array(

’xyz’=>array(

’class’=>’ext.xyz.XyzClass’,

’property1’=>’value1’,

’property2’=>’value2’,

),

// other controllers

),

);

Then, an action a in the controller can be accessed via route xyz/a.

6.2.7 Validator

A validator is mainly used in a model class (one that extends from either CFormModel or
CActiveRecord). Given a validator class XyzClass belonging to the xyz extension, we can
use it by overriding the CModel::rules method in our model class:

class MyModel extends CActiveRecord // or CFormModel

{
public function rules()

{
return array(

array(

’attr1, attr2’,

’ext.xyz.XyzClass’,

’property1’=>’value1’,

’property2’=>’value2’,

),

// other validation rules

);

}
}

6.2.8 Console Command

A console command extension usually enhances the yiic tool with an additional command.
Given a console command XyzClass belonging to the xyz extension, we can use it by
configuring the configuration for the console application:

return array(

http://yiiframework.com/doc/api/CFormModel
http://yiiframework.com/doc/api/CActiveRecord
http://yiiframework.com/doc/api/CModel#rules

6.3 Creating Extensions 101

’commandMap’=>array(

’xyz’=>array(

’class’=>’ext.xyz.XyzClass’,

’property1’=>’value1’,

’property2’=>’value2’,

),

// other commands

),

);

Then, we can use the yiic tool is equipped with an additional command xyz.

Note: A console application usually uses a configuration file that is different from
the one used by a Web application. If an application is created using yiic webapp

command, then the configuration file for the console application protected/yiic

is protected/config/console.php, while the configuration file for the Web appli-
cation is protected/config/main.php.

6.2.9 Module

Please refer to the section about modules on how to use a module.

6.2.10 Generic Component

To use a generic component, we first need to include its class file by using

Yii::import(’ext.xyz.XyzClass’);

Then, we can either create an instance of the class, configure its properties, and call its
methods. We may also extend it to create new child classes.

6.3 Creating Extensions

Because an extension is meant to be used by third-party developers, it takes some addi-
tional efforts to create it. The followings are some general guidelines:

• An extension should be self-contained. That is, its external dependency should be
minimal. It would be a headache for its users if an extension requires installation of
additional packages, classes or resource files.

102 6. Extending Yii

• Files belonging to an extension should be organized under the same directory whose
name is the extension name

• Classes in an extension should be prefixed with some letter(s) to avoid naming
conflict with classes in other extensions.

• An extension should come with detailed installation and API documentation. This
would reduce the time and effort needed by other developers when they use the
extension.

• An extension should be using an appropriate license. If you want to make your ex-
tension to be used by both open-source and closed-source projects, you may consider
using licenses such as BSD, MIT, etc., but not GPL as it requires its derived code
to be open-source as well.

In the following, we describe how to create a new extension, according to its categorization
as described in overview. These descriptions also apply when you are creating a component
mainly used in your own projects.

6.3.1 Application Component

An application component should implement the interface IApplicationComponent or ex-
tend from CApplicationComponent. The main method needed to be implemented is IAp-
plicationComponent::init in which the component performs some initialization work. This
method is invoked after the component is created and the initial property values (specified
in application configuration) are applied.

By default, an application component is created and initialized only when it is accessed for
the first time during request handling. If an application component needs to be created
right after the application instance is created, it should require the user to list its ID in
the CApplication::preload property.

6.3.2 Behavior

To create a behavior, one must implement the IBehavior interface. For convenience, Yii
provides a base class CBehavior that already implements this interface and provides some
additional convenient methods. Child classes mainly need to implement the extra methods
that they intend to make available to the components being attached to.

When developing behaviors for CModel and CActiveRecord, one can also extend CMod-
elBehavior and CActiveRecordBehavior, respectively. These base classes offer additional
features that are specifically made for CModel and CActiveRecord. For example, the

http://yiiframework.com/doc/api/IApplicationComponent
http://yiiframework.com/doc/api/CApplicationComponent
http://yiiframework.com/doc/api/IApplicationComponent#init
http://yiiframework.com/doc/api/IApplicationComponent#init
http://yiiframework.com/doc/api/CApplication#preload
http://yiiframework.com/doc/api/IBehavior
http://yiiframework.com/doc/api/CBehavior
http://yiiframework.com/doc/api/CModel
http://yiiframework.com/doc/api/CActiveRecord
http://yiiframework.com/doc/api/CModelBehavior
http://yiiframework.com/doc/api/CModelBehavior
http://yiiframework.com/doc/api/CActiveRecordBehavior
http://yiiframework.com/doc/api/CModel
http://yiiframework.com/doc/api/CActiveRecord

6.3 Creating Extensions 103

CActiveRecordBehavior class implements a set of methods to respond to the life cycle
events raised in an ActiveRecord object. A child class can thus override these methods to
put in customized code which will participate in the AR life cycles.

The following code shows an example of an ActiveRecord behavior. When this behavior
is attached to an AR object and when the AR object is being saved by calling save(),
it will automatically sets the create time and update time attributes with the current
timestamp.

class TimestampBehavior extends CActiveRecordBehavior

{
public function beforeSave($event)

{
if($this->owner->isNewRecord)

$this->owner->create time=time();

else

$this->owner->update time=time();

}
}

6.3.3 Widget

A widget should extend from CWidget or its child classes.

The easiest way of creating a new widget is extending an existing widget and overriding
its methods or changing its default property values. For example, if you want to use a
nicer CSS style for CTabView, you could configure its CTabView::cssFile property when
using the widget. You can also extend CTabView as follows so that you no longer need to
configure the property when using the widget.

class MyTabView extends CTabView

{
public function init()

{
if($this->cssFile===null)

{
$file=dirname(FILE).DIRECTORY SEPARATOR.’tabview.css’;

$this->cssFile=Yii::app()->getAssetManager()->publish($file);

}
parent::init();

}
}

In the above, we override the CWidget::init method and assign to CTabView::cssFile the
URL to our new default CSS style if the property is not set. We put the new CSS style file

http://yiiframework.com/doc/api/CActiveRecordBehavior
http://yiiframework.com/doc/api/CWidget
http://yiiframework.com/doc/api/CTabView
http://yiiframework.com/doc/api/CTabView#cssFile
http://yiiframework.com/doc/api/CTabView
http://yiiframework.com/doc/api/CWidget#init
http://yiiframework.com/doc/api/CTabView#cssFile

104 6. Extending Yii

under the same directory containing the MyTabView class file so that they can be packaged
as an extension. Because the CSS style file is not Web accessible, we need to publish as
an asset.

To create a new widget from scratch, we mainly need to implement two methods: CWid-
get::init and CWidget::run. The first method is called when we use $this->beginWidget to
insert a widget in a view, and the second method is called when we call $this->endWidget.
If we want to capture and process the content displayed between these two method invo-
cations, we can start output buffering in CWidget::init and retrieve the buffered output
in CWidget::run for further processing.

A widget often involves including CSS, JavaScript or other resource files in the page that
uses the widget. We call these files assets because they stay together with the widget
class file and are usually not accessible by Web users. In order to make these files Web
accessible, we need to publish them using CWebApplication::assetManager, as shown in
the above code snippet. Besides, if we want to include a CSS or JavaScript file in the
current page, we need to register it using CClientScript:

class MyWidget extends CWidget

{
protected function registerClientScript()

{
// ...publish CSS or JavaScript file here...

$cs=Yii::app()->clientScript;

$cs->registerCssFile($cssFile);

$cs->registerScriptFile($jsFile);

}
}

A widget may also have its own view files. If so, create a directory named views under the
directory containing the widget class file, and put all the view files there. In the widget
class, in order to render a widget view, use $this->render(’ViewName’), which is similar
to what we do in a controller.

6.3.4 Action

An action should extend from CAction or its child classes. The main method that needs
to be implemented for an action is IAction::run.

6.3.5 Filter

A filter should extend from CFilter or its child classes. The main methods that need to
be implemented for a filter are CFilter::preFilter and CFilter::postFilter. The former is

http://yiiframework.com/doc/api/CWidget#init
http://yiiframework.com/doc/api/CWidget#init
http://yiiframework.com/doc/api/CWidget#run
http://us3.php.net/manual/en/book.outcontrol.php
http://yiiframework.com/doc/api/CWidget#init
http://yiiframework.com/doc/api/CWidget#run
http://yiiframework.com/doc/api/CWebApplication#assetManager
http://yiiframework.com/doc/api/CClientScript
http://yiiframework.com/doc/api/CAction
http://yiiframework.com/doc/api/IAction#run
http://yiiframework.com/doc/api/CFilter
http://yiiframework.com/doc/api/CFilter#preFilter
http://yiiframework.com/doc/api/CFilter#postFilter

6.3 Creating Extensions 105

invoked before the action is executed while the latter after.

class MyFilter extends CFilter

{
protected function preFilter($filterChain)

{
// logic being applied before the action is executed

return true; // false if the action should not be executed

}

protected function postFilter($filterChain)

{
// logic being applied after the action is executed

}
}

The parameter $filterChain is of type CFilterChain which contains information about
the action that is currently filtered.

6.3.6 Controller

A controller distributed as an extension should extend from CExtController, instead of
CController. The main reason is because CController assumes the controller view files
are located under application.views.ControllerID, while CExtController assumes the
view files are located under the views directory which is a subdirectory of the directory
containing the controller class file. Therefore, it is easier to redistribute the controller
since its view files are staying together with the controller class file.

6.3.7 Validator

A validator should extend from CValidator and implement its CValidator::validateAttribute
method.

class MyValidator extends CValidator

{
protected function validateAttribute($model,$attribute)

{
$value=$model->$attribute;

if($value has error)

$model->addError($attribute,$errorMessage);

}
}

http://yiiframework.com/doc/api/CFilterChain
http://yiiframework.com/doc/api/CExtController
http://yiiframework.com/doc/api/CController
http://yiiframework.com/doc/api/CController
http://yiiframework.com/doc/api/CExtController
http://yiiframework.com/doc/api/CValidator
http://yiiframework.com/doc/api/CValidator#validateAttribute

106 6. Extending Yii

6.3.8 Console Command

A console command should extend from CConsoleCommand and implement its CConsoleCom-
mand::run method. Optionally, we can override CConsoleCommand::getHelp to provide
some nice help information about the command.

class MyCommand extends CConsoleCommand

{
public function run($args)

{
// $args gives an array of the command-line arguments for this command

}

public function getHelp()

{
return ’Usage: how to use this command’;

}
}

6.3.9 Module

Please refer to the section about modules on how to create a module.

A general guideline for developing a module is that it should be self-contained. Resource
files (such as CSS, JavaScript, images) that are used by a module should be distributed
together with the module. And the module should publish them so that they can be
Web-accessible.

6.3.10 Generic Component

Developing a generic component extension is like writing a class. Again, the component
should also be self-contained so that it can be easily used by other developers.

6.4 Using 3rd-Party Libraries

Yii is carefully designed so that third-party libraries can be easily integrated to further
extend Yii’s functionalities. When using third-party libraries in a project, developers often
encounter issues about class naming and file inclusion. Because all Yii classes are prefixed
with letter C, it is less likely class naming issue would occur; and because Yii relies on SPL
autoload to perform class file inclusion, it can play nicely with other libraries if they use
the same autoloading feature or PHP include path to include class files.

Below we use an example to illustrate how to use the Zend Search Lucene component from

http://yiiframework.com/doc/api/CConsoleCommand
http://yiiframework.com/doc/api/CConsoleCommand#run
http://yiiframework.com/doc/api/CConsoleCommand#run
http://yiiframework.com/doc/api/CConsoleCommand#getHelp
http://us3.php.net/manual/en/function.spl-autoload.php
http://us3.php.net/manual/en/function.spl-autoload.php
http://www.zendframework.com/manual/en/zend.search.lucene.html

6.4 Using 3rd-Party Libraries 107

the Zend framework in an Yii application.

First, we extract the Zend framework release file to a directory under protected/vendors,
assuming protected is the application base directory. Verify that the file protected/

vendors/Zend/Search/Lucene.php exists.

Second, at the beginning of a controller class file, insert the following lines:

Yii::import(’application.vendors.*’);

require once(’Zend/Search/Lucene.php’);

The above code includes the class file Lucene.php. Because we are using a relative path,
we need to change the PHP include path so that the file can be located correctly. This is
done by calling Yii::import before require once.

Once the above set up is ready, we can use the Lucene class in a controller action, like the
following:

$lucene=new Zend Search Lucene($pathOfIndex);

$hits=$lucene->find(strtolower($keyword));

http://www.zendframework.com

108 6. Extending Yii

Chapter 7

Special Topics

7.1 URL Management

Complete URL management for a Web application involves two aspects. First, when a user
request comes in terms of a URL, the application needs to parse it into understandable
parameters. Second, the application needs to provide a way of creating URLs so that the
created URLs can be understood by the application. For an Yii application, these are
accomplished with the help of CUrlManager.

7.1.1 Creating URLs

Although URLs can be hardcoded in controller views, it is often more flexible to create
them dynamically:

$url=$this->createUrl($route,$params);

where $this refers to the controller instance; $route specifies the route of the request; and
$params is a list of GET parameters to be appended to the URL.

By default, URLs created by createUrl is in the so-called get format. For example, given
$route=’post/read’ and $params=array(’id’=>100), we would obtain the following URL:

/index.php?r=post/read&id=100

where parameters appear in the query string as a list of Name=Value concatenated with the
ampersand characters, and the r parameter specifies the request route. This URL format
is not very user-friendly because it requires several non-word characters.

We could make the above URL look cleaner and more self-explanatory by using the so-
called path format which eliminates the query string and puts the GET parameters into
the path info part of URL:

http://yiiframework.com/doc/api/CUrlManager
http://yiiframework.com/doc/api/CController#createUrl

110 7. Special Topics

/index.php/post/read/id/100

To change the URL format, we should configure the urlManager application component
so that createUrl can automatically switch to the new format and the application can
properly understand the new URLs:

array(

......

’components’=>array(

......

’urlManager’=>array(

’urlFormat’=>’path’,

),

),

);

Note that we do not need to specify the class of the urlManager component because it is
pre-declared as CUrlManager in CWebApplication.

Tip: The URL generated by the createUrl method is a relative one. In order to get
an absolute URL, we can prefix it with Yii::app()->hostInfo, or call createAb-
soluteUrl.

7.1.2 User-friendly URLs

When path is used as the URL format, we can specify some URL rules to make our URLs
even more user-friendly. For example, we can generate a URL as short as /post/100,
instead of the lengthy /index.php/post/read/id/100. URL rules are used by CUrlManager
for both URL creation and parsing purposes.

To specify URL rules, we need to configure the rules property of the urlManager application
component:

array(

......

’components’=>array(

......

’urlManager’=>array(

’urlFormat’=>’path’,

’rules’=>array(

’pattern1’=>’route1’,

’pattern2’=>’route2’,

http://yiiframework.com/doc/api/CWebApplication#urlManager
http://yiiframework.com/doc/api/CController#createUrl
http://yiiframework.com/doc/api/CWebApplication#urlManager
http://yiiframework.com/doc/api/CUrlManager
http://yiiframework.com/doc/api/CWebApplication
http://yiiframework.com/doc/api/CController#createUrl
http://yiiframework.com/doc/api/CController#createAbsoluteUrl
http://yiiframework.com/doc/api/CController#createAbsoluteUrl
http://yiiframework.com/doc/api/CUrlManager
http://yiiframework.com/doc/api/CUrlManager#rules
http://yiiframework.com/doc/api/CWebApplication#urlManager

7.1 URL Management 111

’pattern3’=>’route3’,

),

),

),

);

The rules are specified as an array of pattern-route pairs, each corresponding to a single
rule. The pattern of a rule is a string used to match the path info part of URLs. And the
route of a rule should refer to a valid controller route.

Info: Starting from version 1.0.6, a rule may be further customized by setting its
urlSuffix and caseSensitive options. And starting from version 1.0.8, a rule may
also have defaultParams which represents a list of name-value pairs to be merged
into $ GET. To customize a rule with these options, we should specify the route part
of the rule as an array, like the following:

’pattern1’=>array(’route1’, ’urlSuffix’=>’.xml’, ’caseSensitive’=>false)

Using Named Parameters

A rule can be associated with a few GET parameters. These GET parameters appear in
the rule’s pattern as special tokens in the following format:

<ParamName:ParamPattern>

where ParamName specifies the name of a GET parameter, and the optional ParamPattern
specifies the regular expression that should be used to match the value of the GET pa-
rameter. In case when ParamPattern is omitted, it means the parameter should match any
characters except the slash /. When creating a URL, these parameter tokens will be re-
placed with the corresponding parameter values; when parsing a URL, the corresponding
GET parameters will be populated with the parsed results.

Let’s use some examples to explain how URL rules work. We assume that our rule set
consists of three rules:

array(

’posts’=>’post/list’,

’post/<id:\d+>’=>’post/read’,
’post/<year:\d{4}>/<title>’=>’post/read’,

)

112 7. Special Topics

• Calling $this->createUrl(’post/list’) generates /index.php/posts. The first rule
is applied.

• Calling $this->createUrl(’post/read’,array(’id’=>100)) generates /index.php/post/
100. The second rule is applied.

• Calling $this->createUrl(’post/read’,array(’year’=>2008,’title’=>’a sample post’))

generates /index.php/post/2008/a%20sample%20post. The third rule is applied.

• Calling $this->createUrl(’post/read’) generates /index.php/post/read. None of
the rules is applied.

In summary, when using createUrl to generate a URL, the route and the GET parameters
passed to the method are used to decide which URL rule to be applied. If every parameter
associated with a rule can be found in the GET parameters passed to createUrl, and if
the route of the rule also matches the route parameter, the rule will be used to generate
the URL.

If the GET parameters passed to createUrl are more than those required by a rule, the addi-
tional parameters will appear in the query string. For example, if we call $this->createUrl(’post/
read’,array(’id’=>100,’year’=>2008)), we would obtain /index.php/post/100?year=2008.
In order to make these additional parameters appear in the path info part, we should ap-
pend /* to the rule. Therefore, with the rule post/<id:\d+>/*, we can obtain the URL as
/index.php/post/100/year/2008.

As we mentioned, the other purpose of URL rules is to parse the requesting URLs. Nat-
urally, this is an inverse process of URL creation. For example, when a user requests for
/index.php/post/100, the second rule in the above example will apply, which resolves in
the route post/read and the GET parameter array(’id’=>100) (accessible via $ GET).

Note: Using URL rules will degrade application performance. This is because when
parsing the request URL, CUrlManager will attempt to match it with each rule until
one can be applied. The more the number of rules, the more the performance impact.
Therefore, a high-traffic Web application should minimize its use of URL rules.

Parameterizing Routes

Starting from version 1.0.5, we may reference named parameters in the route part of a
rule. This allows a rule to be applied to multiple routes based on matching criteria. It
may also help reduce the number of rules needed for an application, and thus improve the
overall performance.

http://yiiframework.com/doc/api/CController#createUrl
http://yiiframework.com/doc/api/CController#createUrl
http://yiiframework.com/doc/api/CController#createUrl
http://yiiframework.com/doc/api/CUrlManager

7.1 URL Management 113

We use the following example rules to illustrate how to parameterize routes with named
parameters:

array(

’< c:(post|comment)>/<id:\d+>/< a:(create|update|delete)>’ => ’< c>/< a>’,

’< c:(post|comment)>/<id:\d+>’ => ’< c>/read’,

’< c:(post|comment)>s’ => ’< c>/list’,

)

In the above, we use two named parameters in the route part of the rules: c and a. The
former matches a controller ID to be either post or comment, while the latter matches an
action ID to be create, update or delete. You may name the parameters differently as
long as they do not conflict with GET parameters that may appear in URLs.

Using the aboving rules, the URL /index.php/post/123/create would be parsed as the
route post/create with GET parameter id=123. And given the route comment/list and
GET parameter page=2, we can create a URL /index.php/comments?page=2.

Hiding index.php

There is one more thing that we can do to further clean our URLs, i.e., hiding the entry
script index.php in the URL. This requires us to configure the Web server as well as the
urlManager application component.

We first need to configure the Web server so that a URL without the entry script can still
be handled by the entry script. For Apache HTTP server, this can be done by turning
on the URL rewriting engine and specifying some rewriting rules. We can create the file
/wwwroot/blog/.htaccess with the following content. Note that the same content can also
be put in the Apache configuration file within the Directory element for /wwwroot/blog.

Options +FollowSymLinks

IndexIgnore */*

RewriteEngine on

if a directory or a file exists, use it directly

RewriteCond %{REQUEST_FILENAME} !-f

RewriteCond %{REQUEST_FILENAME} !-d

otherwise forward it to index.php

RewriteRule . index.php

We then configure the showScriptName property of the urlManager component to be
false.

http://yiiframework.com/doc/api/CWebApplication#urlManager
http://httpd.apache.org/
http://yiiframework.com/doc/api/CUrlManager#showScriptName
http://yiiframework.com/doc/api/CWebApplication#urlManager

114 7. Special Topics

Now if we call $this->createUrl(’post/read’,array(’id’=>100)), we would obtain the
URL /post/100. More importantly, this URL can be properly recognized by our Web
application.

Faking URL Suffix

We may also add some suffix to our URLs. For example, we can have /post/100.html

instead of /post/100. This makes it look more like a URL to a static Web page. To do so,
simply configure the urlManager component by setting its urlSuffix property to the suffix
you like.

7.2 Authentication and Authorization

Authentication and authorization are required for a Web page that should be limited to
certain users. Authentication is about verifying whether someone is who he claims he
is. It usually involves a username and a password, but may include any other methods of
demonstrating identity, such as a smart card, fingerprints, etc. Authorization is finding out
if the person, once identified (authenticated), is permitted to manipulate specific resources.
This is usually determined by finding out if that person is of a particular role that has
access to the resources.

Yii has a built-in authentication/authorization (auth) framework which is easy to use and
can be customized for special needs.

The central piece in the Yii auth framework is a pre-declared user application component
which is an object implementing the IWebUser interface. The user component represents
the persistent identity information for the current user. We can access it at any place
using Yii::app()->user.

Using the user component, we can check if a user is logged in or not via CWebUser::isGuest;
we can login and logout a user; we can check if the user can perform specific operations
by calling CWebUser::checkAccess; and we can also obtain the unique identifier and other
persistent identity information about the user.

7.2.1 Defining Identity Class

In order to authenticate a user, we define an identity class which contains the actual au-
thentication logic. The identity class should implement the IUserIdentity interface. Dif-
ferent classes may be implemented for different authentication approaches (e.g. OpenID,
LDAP). A good start is by extending CUserIdentity which is a base class for the authen-

http://yiiframework.com/doc/api/CWebApplication#urlManager
http://yiiframework.com/doc/api/CUrlManager#urlSuffix
http://yiiframework.com/doc/api/IWebUser
http://yiiframework.com/doc/api/CWebUser#isGuest
http://yiiframework.com/doc/api/CWebUser#login
http://yiiframework.com/doc/api/CWebUser#logout
http://yiiframework.com/doc/api/CWebUser#checkAccess
http://yiiframework.com/doc/api/CWebUser#name
http://yiiframework.com/doc/api/IUserIdentity
http://yiiframework.com/doc/api/CUserIdentity

7.2 Authentication and Authorization 115

tication approach based on username and password.

The main work in defining an identity class is the implementation of the IUserIden-
tity::authenticate method. An identity class may also declare additional identity infor-
mation that needs to be persistent during the user session.

In the following example, we validate the given username and password against the user
table in a database using Active Record. We also override the getId method to return the
id variable which is set during authentication (the default implementation would return

the username as the ID). During authentication, we store the retrieved title information
in a state with the same name by calling CBaseUserIdentity::setState.

class UserIdentity extends CUserIdentity

{
private $ id;

public function authenticate()

{
$record=User::model()->findByAttributes(array(’username’=>$this->username));

if($record===null)

$this->errorCode=self::ERROR USERNAME INVALID;

else if($record->password!==md5($this->password))

$this->errorCode=self::ERROR PASSWORD INVALID;

else

{
$this-> id=$record->id;

$this->setState(’title’, $record->title);

$this->errorCode=self::ERROR NONE;

}
return !$this->errorCode;

}

public function getId()

{
return $this-> id;

}
}

Information stored in a state (by calling CBaseUserIdentity::setState) will be passed to
CWebUser which stores them in a persistent storage, such as session. These information
can be accessed like properties of CWebUser. For example, we can obtain the title

information of the current user by Yii::app()->user->title (This has been available since
version 1.0.3. In prior versions, we should use Yii::app()->user->getState(’title’),
instead.)

http://yiiframework.com/doc/api/IUserIdentity#authenticate
http://yiiframework.com/doc/api/IUserIdentity#authenticate
http://yiiframework.com/doc/api/CBaseUserIdentity#setState
http://yiiframework.com/doc/api/CBaseUserIdentity#setState
http://yiiframework.com/doc/api/CWebUser
http://yiiframework.com/doc/api/CWebUser

116 7. Special Topics

Info: By default, CWebUser uses session as persistent storage for user identity
information. If cookie-based login is enabled (by setting CWebUser::allowAutoLogin
to be true), the user identity information may also be saved in cookie. Make sure
you do not declare sensitive information (e.g. password) to be persistent.

7.2.2 Login and Logout

Using the identity class and the user component, we can implement login and logout
actions easily.

// Login a user with the provided username and password.

$identity=new UserIdentity($username,$password);

if($identity->authenticate())

Yii::app()->user->login($identity);

else

echo $identity->errorMessage;

......

// Logout the current user

Yii::app()->user->logout();

By default, a user will be logged out after a certain period of inactivity, depending on the
session configuration. To change this behavior, we can set the allowAutoLogin property
of the user component to be true and pass a duration parameter to the CWebUser::login
method. The user will then remain logged in for the specified duration, even if he closes
his browser window. Note that this feature requires the user’s browser to accept cookies.

// Keep the user logged in for 7 days.

// Make sure allowAutoLogin is set true for the user component.

Yii::app()->user->login($identity,3600*24*7);

7.2.3 Access Control Filter

Access control filter is a preliminary authorization scheme that checks if the current user
can perform the requested controller action. The authorization is based on user’s name,
client IP address and request types. It is provided as a filter named as ”accessControl”.

Tip: Access control filter is sufficient for simple scenarios. For complex access
control, you may use role-based access (RBAC) which is to be covered shortly.

To control the access to actions in a controller, we install the access control filter by
overriding CController::filters (see Filter for more details about installing filters).

http://yiiframework.com/doc/api/CWebUser
http://yiiframework.com/doc/api/CWebUser#allowAutoLogin
http://www.php.net/manual/en/session.configuration.php
http://yiiframework.com/doc/api/CWebUser#allowAutoLogin
http://yiiframework.com/doc/api/CWebUser#login
http://yiiframework.com/doc/api/CController#filterAccessControl
http://yiiframework.com/doc/api/CController#filters

7.2 Authentication and Authorization 117

class PostController extends CController

{
......

public function filters()

{
return array(

’accessControl’,

);

}
}

In the above, we specify that the access control filter should be applied to every action
of PostController. The detailed authorization rules used by the filter are specified by
overriding CController::accessRules in the controller class.

class PostController extends CController

{
......

public function accessRules()

{
return array(

array(’deny’,

’actions’=>array(’create’, ’edit’),

’users’=>array(’?’),

),

array(’allow’,

’actions’=>array(’delete’),

’roles’=>array(’admin’),

),

array(’deny’,

’actions’=>array(’delete’),

’users’=>array(’*’),

),

);

}
}

The above code specifies three rules, each represented as an array. The first element of
the array is either ’allow’ or ’deny’ and the rest name-value pairs specify the pattern
parameters of the rule. These rules read: the create and edit actions cannot be executed
by anonymous users; the delete action can be executed by users with admin role; and the
delete action cannot be executed by anyone.

The access rules are evaluated one by one in the order they are specified. The first rule
that matches the current pattern (e.g. username, roles, client IP, address) determines the

http://yiiframework.com/doc/api/CController#filterAccessControl
http://yiiframework.com/doc/api/CController#accessRules

118 7. Special Topics

authorization result. If this rule is an allow rule, the action can be executed; if it is a deny

rule, the action cannot be executed; if none of the rules matches the context, the action
can still be executed.

Tip: To ensure an action does not get executed under certain contexts, it is ben-
eficial to always specify a matching-all deny rule at the end of rule set, like the
following:

return array(

// ... other rules...

// the following rule denies ’delete’ action for all contexts

array(’deny’,

’action’=>’delete’,

),

);

The reason for this rule is because if none of the rules matches a context, an action
will be executed.

An access rule can match the following context parameters:

• actions: specifies which actions this rule matches. This should be an array of action
IDs. The comparison is case-insensitive.

• controllers: specifies which controllers this rule matches. This should be an array of
controller IDs. The comparison is case-insensitive. This option has been available
since version 1.0.4.

• users: specifies which users this rule matches. The current user’s name is used for
matching. The comparison is case-insensitive. Three special characters can be used
here:

– *: any user, including both anonymous and authenticated users.

– ?: anonymous users.

– @: authenticated users.

• roles: specifies which roles that this rule matches. This makes use of the feature
to be described in the next subsection. In particular, the rule is applied if CWe-
bUser::checkAccess returns true for one of the roles. Note, you should mainly use
roles in an allow rule because by definition, a role represents a permission to do
something. Also note, although we use the term roles here, its value can actually
be any auth item, including roles, tasks and operations.

http://yiiframework.com/doc/api/CAccessRule#actions
http://yiiframework.com/doc/api/CAccessRule#controllers
http://yiiframework.com/doc/api/CAccessRule#users
http://yiiframework.com/doc/api/CWebUser#name
http://yiiframework.com/doc/api/CAccessRule#roles
http://yiiframework.com/doc/api/CWebUser#checkAccess
http://yiiframework.com/doc/api/CWebUser#checkAccess

7.2 Authentication and Authorization 119

• ips: specifies which client IP addresses this rule matches.

• verbs: specifies which request types (e.g. GET, POST) this rule matches. The compar-
ison is case-insensitive.

• expression: specifies a PHP expression whose value indicates whether this rule
matches. In the expression, you can use variable $user which refers to Yii::app()->user.
This option has been available since version 1.0.3.

Handling Authorization Result

When authorization fails, i.e., the user is not allowed to perform the specified action, one
of the following two scenarios may happen:

• If the user is not logged in and if the loginUrl property of the user component is
configured to be the URL of the login page, the browser will be redirected to that
page. Note that by default, loginUrl points to the site/login page.

• Otherwise an HTTP exception will be displayed with error code 403.

When configuring the loginUrl property, one can provide a relative or absolute URL. One
can also provide an array which will be used to generate a URL by calling CWebAppli-
cation::createUrl. The first array element should specify the route to the login controller
action, and the rest name-value pairs are GET parameters. For example,

array(

......

’components’=>array(

’user’=>array(

// this is actually the default value

’loginUrl’=>array(’site/login’),

),

),

)

If the browser is redirected to the login page and the login is successful, we may want to
redirect the browser back to the page that caused the authorization failure. How do we
know the URL for that page? We can get this information from the returnUrl property
of the user component. We can thus do the following to perform the redirection:

Yii::app()->request->redirect(Yii::app()->user->returnUrl);

http://yiiframework.com/doc/api/CAccessRule#ips
http://yiiframework.com/doc/api/CAccessRule#verbs
http://yiiframework.com/doc/api/CAccessRule#expression
http://yiiframework.com/doc/api/CWebUser#loginUrl
http://yiiframework.com/doc/api/CWebUser#loginUrl
http://yiiframework.com/doc/api/CWebUser#loginUrl
http://yiiframework.com/doc/api/CWebApplication#createUrl
http://yiiframework.com/doc/api/CWebApplication#createUrl
http://yiiframework.com/doc/api/CWebUser#returnUrl

120 7. Special Topics

7.2.4 Role-Based Access Control

Role-Based Access Control (RBAC) provides a simple yet powerful centralized access
control. Please refer to the Wiki article for more details about comparing RBAC with
other more traditional access control schemes.

Yii implements a hierarchical RBAC scheme via its authManager application component.
In the following ,we first introduce the main concepts used in this scheme; we then describe
how to define authorization data; at the end we show how to make use of the authorization
data to perform access checking.

Overview

A fundamental concept in Yii’s RBAC is authorization item. An authorization item is a
permission to do something (e.g. creating new blog posts, managing users). According to
its granularity and targeted audience, authorization items can be classified as operations,
tasks and roles. A role consists of tasks, a task consists of operations, and an operation is
a permission that is atomic. For example, we can have a system with administrator role
which consists of post management task and user management task. The user management

task may consist of create user, update user and delete user operations. For more
flexibility, Yii also allows a role to consist of other roles or operations, a task to consist of
other tasks, and an operation to consist of other operations.

An authorization item is uniquely identified by its name.

An authorization item may be associated with a business rule. A business rule is a piece of
PHP code that will be executed when performing access checking with respect to the item.
Only when the execution returns true, will the user be considered to have the permission
represented by the item. For example, when defining an operation updatePost, we would
like to add a business rule that checks if the user ID is the same as the post’s author ID
so that only the author himself can have the permission to update a post.

Using authorization items, we can build up an authorization hierarchy. An item A is a par-
ent of another item B in the hierarchy if A consists of B (or say A inherits the permission(s)
represented by B). An item can have multiple child items, and it can also have multipe
parent items. Therefore, an authorization hierarchy is a partial-order graph rather than a
tree. In this hierarchy, role items sit on top levels, operation items on bottom levels, while
task items in between.

Once we have an authorization hierarchy, we can assign roles in this hierarchy to appli-
cation users. A user, once assigned with a role, will have the permissions represented by

http://en.wikipedia.org/wiki/Role-based_access_control
http://yiiframework.com/doc/api/CWebApplication#authManager

7.2 Authentication and Authorization 121

the role. For example, if we assign the administrator role to a user, he will have the
administrator permissions which include post management and user management (and the
corresponding operations such as create user).

Now the fun part starts. In a controller action, we want to check if the current user can
delete the specified post. Using the RBAC hierarchy and assignment, this can be done
easily as follows:

if(Yii::app()->user->checkAccess(’deletePost’))

{
// delete the post

}

Configuring Authorization Manager

Before we set off to define an authorization hierarchy and perform access checking, we
need to configure the authManager application component. Yii provides two types of
authorization managers: CPhpAuthManager and CDbAuthManager. The former uses a
PHP script file to store authorization data, while the latter stores authorization data in
database. When we configure the authManager application component, we need to specify
which component class to use and what are the initial property values for the component.
For example,

return array(

’components’=>array(

’db’=>array(

’class’=>’CDbConnection’,

’connectionString’=>’sqlite:path/to/file.db’,

),

’authManager’=>array(

’class’=>’CDbAuthManager’,

’connectionID’=>’db’,

),

),

);

We can then access the authManager application component using Yii::app()->authManager.

Defining Authorization Hierarchy

Defining authorization hierarchy involves three steps: defining authorization items, estab-
lishing relationships between authorization items, and assigning roles to application users.

http://yiiframework.com/doc/api/CWebApplication#authManager
http://yiiframework.com/doc/api/CPhpAuthManager
http://yiiframework.com/doc/api/CDbAuthManager
http://yiiframework.com/doc/api/CWebApplication#authManager
http://yiiframework.com/doc/api/CWebApplication#authManager

122 7. Special Topics

The authManager application component provides a whole set of APIs to accomplish these
tasks.

To define an authorization item, call one of the following methods, depending on the type
of the item:

• CAuthManager::createRole

• CAuthManager::createTask

• CAuthManager::createOperation

Once we have a set of authorization items, we can call the following methods to establish
relationships between authorization items:

• CAuthManager::addItemChild

• CAuthManager::removeItemChild

• CAuthItem::addChild

• CAuthItem::removeChild

And finally, we call the following methods to assign role items to individual users:

• CAuthManager::assign

• CAuthManager::revoke

Below we show an example about building an authorization hierarchy with the provided
APIs:

$auth=Yii::app()->authManager;

$auth->createOperation(’createPost’,’create a post’);

$auth->createOperation(’readPost’,’read a post’);

$auth->createOperation(’updatePost’,’update a post’);

$auth->createOperation(’deletePost’,’delete a post’);

$bizRule=’return Yii::app()->user->id==$params["post"]->authID;’;

$task=$auth->createTask(’updateOwnPost’,’update a post by author himself’,$bizRule);

$task->addChild(’updatePost’);

http://yiiframework.com/doc/api/CWebApplication#authManager
http://yiiframework.com/doc/api/CAuthManager#createRole
http://yiiframework.com/doc/api/CAuthManager#createTask
http://yiiframework.com/doc/api/CAuthManager#createOperation
http://yiiframework.com/doc/api/CAuthManager#addItemChild
http://yiiframework.com/doc/api/CAuthManager#removeItemChild
http://yiiframework.com/doc/api/CAuthItem#addChild
http://yiiframework.com/doc/api/CAuthItem#removeChild
http://yiiframework.com/doc/api/CAuthManager#assign
http://yiiframework.com/doc/api/CAuthManager#revoke

7.2 Authentication and Authorization 123

$role=$auth->createRole(’reader’);

$role->addChild(’readPost’);

$role=$auth->createRole(’author’);

$role->addChild(’reader’);

$role->addChild(’createPost’);

$role->addChild(’updateOwnPost’);

$role=$auth->createRole(’editor’);

$role->addChild(’reader’);

$role->addChild(’updatePost’);

$role=$auth->createRole(’admin’);

$role->addChild(’editor’);

$role->addChild(’author’);

$role->addChild(’deletePost’);

$auth->assign(’reader’,’readerA’);

$auth->assign(’author’,’authorB’);

$auth->assign(’editor’,’editorC’);

$auth->assign(’admin’,’adminD’);

Info: While the above example looks long and tedious, it is mainly for demonstrative
purpose. Developers usually need to develop some user interfaces so that end users
can use to establish an authorization hierarchy more intuitively.

Using Business Rules

When we are defining the authorization hierarchy, we can associate a role, a task or an
operation with a so-called business rule. We may also associate a business rule when we
assign a role to a user. A business rule is a piece of PHP code that is executed when we
perform access checking. The returning value of the code is used to determine if the role
or assignment applies to the current user. In the example above, we associated a business
rule with the updateOwnPost task. In the business rule we simply check if the current user
ID is the same as the specified post’s author ID. The post information in the $params array
is supplied by developers when performing access checking.

Access Checking

To perform access checking, we first need to know the name of the authorization item.
For example, to check if the current user can create a post, we would check if he has the

124 7. Special Topics

permission represented by the createPost operation. We then call CWebUser::checkAccess
to perform the access checking:

if(Yii::app()->user->checkAccess(’createPost’))

{
// create post

}

If the authorization rule is associated with a business rule which requires additional pa-
rameters, we can pass them as well. For example, to check if a user can update a post, we
would do

$params=array(’post’=>$post);

if(Yii::app()->user->checkAccess(’updateOwnPost’,$params))

{
// update post

}

Using Default Roles

Note: The default role feature has been available since version 1.0.3

Many Web applications need some very special roles that would be assigned to every or
most of the system users. For example, we may want to assign some privileges to all
authenticated users. It poses a lot of maintenance trouble if we explicitly specify and
store these role assignments. We can exploit default roles to solve this problem.

A default role is a role that is implicitly assigned to every user, including both au-
thenticated and guest. We do not need to explicitly assign it to a user. When CWe-
bUser::checkAccess is invoked, default roles will be checked first as if they are assigned to
the user.

Default roles must be declared in the CAuthManager::defaultRoles property. For example,
the following configuration declares two roles to be default roles: authenticated and guest.

return array(

’components’=>array(

’authManager’=>array(

’class’=>’CDbAuthManager’,

’defaultRoles’=>array(’authenticated’, ’guest’),

),

http://yiiframework.com/doc/api/CWebUser#checkAccess
http://yiiframework.com/doc/api/CWebUser#checkAccess
http://yiiframework.com/doc/api/CWebUser#checkAccess
http://yiiframework.com/doc/api/CAuthManager#defaultRoles

7.3 Theming 125

),

);

Because a default role is assigned to every user, it usually needs to be associated with a
business rule that determines whether the role really applies to the user. For example,
the following code defines two roles, authenticated and guest, which effectively apply to
authenticated users and guest users, respectively.

$bizRule=’return !Yii::app()->user->isGuest;’;

$auth->createRole(’authenticated’, ’authenticated user’, $bizRule);

$bizRule=’return Yii::app()->user->isGuest;’;

$auth->createRole(’guest’, ’guest user’, $bizRule);

7.3 Theming

Theming is a systematic way of customizing the outlook of pages in a Web application.
By applying a new theme, the overall appearance of a Web application can be changed
instantly and dramatically.

In Yii, each theme is represented as a directory consisting of view files, layout files, and
relevant resource files such as images, CSS files, JavaScript files, etc. The name of a theme
is its directory name. All themes reside under the same directory WebRoot/themes. At any
time, only one theme can be active.

Tip: The default theme root directory WebRoot/themes can be configured to be
a different one. Simply configure the basePath and the baseUrl properties of the
themeManager application component to be the desired ones.

To activate a theme, set the theme property of the Web application to be the name of the
desired theme. This can be done either in the application configuration or during runtime
in controller actions.

Note: Theme name is case-sensitive. If you attempt to activate a theme that does
not exist, Yii::app()->theme will return null.

Contents under a theme directory should be organized in the same way as those under
the application base path. For example, all view files must be located under views, layout

http://yiiframework.com/doc/api/CThemeManager#basePath
http://yiiframework.com/doc/api/CThemeManager#baseUrl
http://yiiframework.com/doc/api/CWebApplication#themeManager
http://yiiframework.com/doc/api/CWebApplication#theme

126 7. Special Topics

view files under views/layouts, and system view files under views/system. For example, if
we want to replace the create view of PostController with a view in the classic theme,
we should save the new view file as WebRoot/themes/classic/views/post/create.php.

For views belonging to controllers in a module, the corresponding themed view files
should also be placed under the views directory. For example, if the aforementioned
PostController is in a module named forum, we should save the create view file as
WebRoot/themes/classic/views/forum/post/create.php. If the forum module is nested in
another module named support, then the view file should be WebRoot/themes/classic/

views/support/forum/post/create.php.

Note: Because the views directory may contain security-sensitive data, it should
be configured to prevent from being accessed by Web users.

When we call render or renderPartial to display a view, the corresponding view file as well
as the layout file will be looked for in the currently active theme. And if found, those files
will be rendered. Otherwise, it falls back to the default location as specified by viewPath
and layoutPath.

Tip: Inside a theme view, we often need to link other theme resource files. For
example, we may want to show an image file under the theme’s images directory.
Using the baseUrl property of the currently active theme, we can generate the URL
for the image as follows,

Yii::app()->theme->baseUrl . ’/images/FileName.gif’

Below is an example of directory organization for an application with two themes basic

and fancy.

WebRoot/

assets

protected/

.htaccess

components/

controllers/

models/

views/

layouts/

main.php

site/

index.php

http://yiiframework.com/doc/api/CController#render
http://yiiframework.com/doc/api/CController#renderPartial
http://yiiframework.com/doc/api/CController#viewPath
http://yiiframework.com/doc/api/CWebApplication#layoutPath
http://yiiframework.com/doc/api/CTheme#baseUrl

7.4 Logging 127

themes/

basic/

views/

.htaccess

layouts/

main.php

site/

index.php

fancy/

views/

.htaccess

layouts/

main.php

site/

index.php

In the application configuration, if we configure

return array(

’theme’=>’basic’,

......

);

then the basic theme will be in effect, which means the application’s layout will use the
one under the directory themes/basic/views/layouts, and the site’s index view will use
the one under themes/basic/views/site. In case a view file is not found in the theme, it
will fall back to the one under the protected/views directory.

7.4 Logging

Yii provides a flexible and extensible logging feature. Messages logged can be classified
according to log levels and message categories. Using level and category filters, selected
messages can be further routed to different destinations, such as files, emails, browser
windows, etc.

7.4.1 Message Logging

Messages can be logged by calling either Yii::log or Yii::trace. The difference between
these two methods is that the latter logs a message only when the application is in debug
mode.

Yii::log($message, $level, $category);

Yii::trace($message, $category);

http://yiiframework.com/doc/api/Yii#log
http://yiiframework.com/doc/api/Yii#trace

128 7. Special Topics

When logging a message, we need to specify its category and level. Category is a string in
the format of xxx.yyy.zzz which resembles to the path alias. For example, if a message is
logged in CController, we may use the category system.web.CController. Message level
should be one of the following values:

• trace: this is the level used by Yii::trace. It is for tracing the execution flow of the
application during development.

• info: this is for logging general information.

• profile: this is for performance profile which is to be described shortly.

• warning: this is for warning messages.

• error: this is for fatal error messages.

7.4.2 Message Routing

Messages logged using Yii::log or Yii::trace are kept in memory. We usually need to display
them in browser windows, or save them in some persistent storage such as files, emails.
This is called message routing, i.e., sending messages to different destinations.

In Yii, message routing is managed by a CLogRouter application component. It manages a
set of the so-called log routes. Each log route represents a single log destination. Messages
sent along a log route can be filtered according to their levels and categories.

To use message routing, we need to install and preload a CLogRouter application compo-
nent. We also need to configure its routes property with the log routes that we want. The
following shows an example of the needed application configuration:

array(

......

’preload’=>array(’log’),

’components’=>array(

......

’log’=>array(

’class’=>’CLogRouter’,

’routes’=>array(

array(

’class’=>’CFileLogRoute’,

’levels’=>’trace, info’,

’categories’=>’system.*’,

),

array(

’class’=>’CEmailLogRoute’,

http://yiiframework.com/doc/api/CController
http://yiiframework.com/doc/api/Yii#trace
http://yiiframework.com/doc/api/Yii#log
http://yiiframework.com/doc/api/Yii#trace
http://yiiframework.com/doc/api/CLogRouter
http://yiiframework.com/doc/api/CLogRouter
http://yiiframework.com/doc/api/CLogRouter#routes

7.4 Logging 129

’levels’=>’error, warning’,

’emails’=>’admin@example.com’,

),

),

),

),

)

In the above example, we have two log routes. The first route is CFileLogRoute which
saves messages in a file under the application runtime directory. Only messages whose
level is trace or info and whose category starts with system. are saved. The second route
is CEmailLogRoute which sends messages to the specified email addresses. Only messages
whose level is error or warning are sent.

The following log routes are available in Yii:

• CDbLogRoute: saves messages in a database table.

• CEmailLogRoute: sends messages to specified email addresses.

• CFileLogRoute: saves messages in a file under the application runtime directory.

• CWebLogRoute: displays messages at the end of the current Web page.

• CProfileLogRoute: displays profiling messages at the end of the current Web page.

Info: Message routing occurs at the end of the current request cycle when the
onEndRequest event is raised. To explicitly terminate the processing of the current
request, call CApplication::end() instead of die() or exit(), because CApplica-
tion::end() will raise the onEndRequest event so that the messages can be properly
logged.

Message Filtering

As we mentioned, messages can be filtered according to their levels and categories before
they are sent long a log route. This is done by setting the levels and categories properties
of the corresponding log route. Multiple levels or categories should be concatenated by
commas.

Because message categories are in the format of xxx.yyy.zzz, we may treat them as a
category hierarchy. In particular, we say xxx is the parent of xxx.yyy which is the parent
of xxx.yyy.zzz. We can then use xxx.* to represent category xxx and all its child and
grandchild categories.

http://yiiframework.com/doc/api/CFileLogRoute
http://yiiframework.com/doc/api/CEmailLogRoute
http://yiiframework.com/doc/api/CDbLogRoute
http://yiiframework.com/doc/api/CEmailLogRoute
http://yiiframework.com/doc/api/CFileLogRoute
http://yiiframework.com/doc/api/CWebLogRoute
http://yiiframework.com/doc/api/CProfileLogRoute
http://yiiframework.com/doc/api/CApplication#onEndRequest
http://yiiframework.com/doc/api/CApplication#end
http://yiiframework.com/doc/api/CApplication#end
http://yiiframework.com/doc/api/CApplication#end
http://yiiframework.com/doc/api/CApplication#onEndRequest
http://yiiframework.com/doc/api/CLogRoute#levels
http://yiiframework.com/doc/api/CLogRoute#categories

130 7. Special Topics

Logging Context Information

Starting from version 1.0.6, we can specify to log additional context information, such
as PHP predefined variables (e.g. $ GET, $ SERVER), session ID, user name, etc. This is
accomplished by specifying the CLogRoute::filter property of a log route to be a suitable
log filter.

The framework comes with the convenient CLogFilter that may be used as the needed log
filter in most cases. By default, CLogFilter will log a message with variables like $ GET,
$ SERVER which often contains valuable system context information. CLogFilter can also
be configured to prefix each logged message with session ID, username, etc., which may
greatly simplifying the global search when we are checking the numerous logged messages.

The following configuration shows how to enable logging context information. Note that
each log route may have its own log filter. And by default, a log route does not have a log
filter.

array(

......

’preload’=>array(’log’),

’components’=>array(

......

’log’=>array(

’class’=>’CLogRouter’,

’routes’=>array(

array(

’class’=>’CFileLogRoute’,

’levels’=>’error’,

’filter’=>’CLogFilter’,

),

...other log routes...

),

),

),

)

Starting from version 1.0.7, Yii supports logging call stack information in the messages
that are logged by calling Yii::trace. This feature is disabled by default because it lowers
performance. To use this feature, simply define a constant named YII TRACE LEVEL at the
beginning of the entry script (before including yii.php) to be an integer greater than 0.
Yii will then append to every trace message with the file name and line number of the call
stacks belonging to application code. The number YII TRACE LEVEL determines how many
layers of each call stack should be recorded. This information is particularly useful during
development stage as it can help us identify the places that trigger the trace messages.

http://yiiframework.com/doc/api/CLogRoute#filter
http://yiiframework.com/doc/api/CLogFilter
http://yiiframework.com/doc/api/CLogFilter
http://yiiframework.com/doc/api/CLogFilter

7.4 Logging 131

7.4.3 Performance Profiling

Performance profiling is a special type of message logging. Performance profiling can be
used to measure the time needed for the specified code blocks and find out what the
performance bottleneck is.

To use performance profiling, we need to identify which code blocks need to be profiled.
We mark the beginning and the end of each code block by inserting the following methods:

Yii::beginProfile(’blockID’);

...code block being profiled...

Yii::endProfile(’blockID’);

where blockID is an ID that uniquely identifies the code block.

Note, code blocks need to be nested properly. That is, a code block cannot intersect with
another. It must be either at a parallel level or be completely enclosed by the other code
block.

To show profiling result, we need to install a CLogRouter application component with
a CProfileLogRoute log route. This is the same as we do with normal message routing.
The CProfileLogRoute route will display the performance results at the end of the current
page.

Profiling SQL Executions

Profiling is especially useful when working with database since SQL executions are of-
ten the main performance bottleneck of an application. While we can manually insert
beginProfile and endProfile statements at appropriate places to measure the time spent
in each SQL execution, starting from version 1.0.6, Yii provides a more systematic ap-
proach to solve this problem.

By setting CDbConnection::enableProfiling to be true in the application configuration,
every SQL statement being executed will be profiled. The results can be readily displayed
using the aforementioned CProfileLogRoute, which can show us how much time is spent
in executing what SQL statement. We can also call CDbConnection::getStats() to retrieve
the total number SQL statements executed and their total execution time.

http://yiiframework.com/doc/api/CLogRouter
http://yiiframework.com/doc/api/CProfileLogRoute
http://yiiframework.com/doc/api/CProfileLogRoute
http://yiiframework.com/doc/api/CDbConnection#enableProfiling
http://yiiframework.com/doc/api/CProfileLogRoute
http://yiiframework.com/doc/api/CDbConnection#getStats

132 7. Special Topics

7.5 Error Handling

Yii provides a complete error handling framework based on the PHP 5 exception mecha-
nism. When the application is created to handle an incoming user request, it registers its
handleError method to handle PHP warnings and notices; and it registers its handleExcep-
tion method to handle uncaught PHP exceptions. Consequently, if a PHP warning/notice
or an uncaught exception occurs during the application execution, one of the error handlers
will take over the control and start the necessary error handling procedure.

Tip: The registration of error handlers is done in the application’s constructor by
calling PHP functions set exception handler and set error handler. If you do not
want Yii to handle the errors and exceptions, you may define constant YII ENABLE

ERROR HANDLER and YII ENABLE EXCEPTION HANDLER to be false in the entry script.

By default, errorHandler (or exceptionHandler) will raise an onError event (or onException
event). If the error (or exception) is not handled by any event handler, it will call for help
from the errorHandler application component.

7.5.1 Raising Exceptions

Raising exceptions in Yii is not different from raising a normal PHP exception. One uses
the following syntax to raise an exception when needed:

throw new ExceptionClass(’ExceptionMessage’);

Yii defines two exception classes: CException and CHttpException. The former is a
generic exception class, while the latter represents an exception that should be displayed
to end users. The latter also carries a statusCode property representing an HTTP status
code. The class of an exception determines how it should be displayed, as we will explain
next.

Tip: Raising a CHttpException exception is a simple way of reporting errors caused
by user misoperation. For example, if the user provides an invalid post ID in the
URL, we can simply do the following to show a 404 error (page not found):

// if post ID is invalid

throw new CHttpException(404,’The specified post cannot be found.’);

http://yiiframework.com/doc/api/CApplication#handleError
http://yiiframework.com/doc/api/CApplication#handleException
http://yiiframework.com/doc/api/CApplication#handleException
http://www.php.net/manual/en/function.set-exception-handler.php
http://www.php.net/manual/en/function.set-error-handler.php
http://yiiframework.com/doc/api/CApplication#errorHandler
http://yiiframework.com/doc/api/CApplication#exceptionHandler
http://yiiframework.com/doc/api/CApplication#onError
http://yiiframework.com/doc/api/CApplication#onException
http://yiiframework.com/doc/api/CErrorHandler
http://yiiframework.com/doc/api/CException
http://yiiframework.com/doc/api/CHttpException
http://yiiframework.com/doc/api/CHttpException#statusCode
http://yiiframework.com/doc/api/CHttpException

7.5 Error Handling 133

7.5.2 Displaying Errors

When an error is forwarded to the CErrorHandler application component, it chooses an
appropriate view to display the error. If the error is meant to be displayed to end users,
such as a CHttpException, it will use a view named errorXXX, where XXX stands for the
HTTP status code (e.g. 400, 404, 500). If the error is an internal one and should only be
displayed to developers, it will use a view named exception. In the latter case, complete
call stack as well as the error line information will be displayed.

Info: When the application runs in production mode, all errors including those
internal ones will be displayed using view errorXXX. This is because the call stack
of an error may contain sensitive information. In this case, developers should rely
on the error logs to determine what is the real cause of an error.

CErrorHandler searches for the view file corresponding to a view in the following order:

1. WebRoot/themes/ThemeName/views/system: this is the system view directory under the
currently active theme.

2. WebRoot/protected/views/system: this is the default system view directory for an
application.

3. yii/framework/views: this is the standard system view directory provided by the Yii
framework.

Therefore, if we want to customize the error display, we can simply create error view files
under the system view directory of our application or theme. Each view file is a normal
PHP script consisting of mainly HTML code. For more details, please refer to the default
view files under the framework’s view directory.

Handling Errors Using an Action

Starting from version 1.0.6, Yii allows using a controller action to handle the error display
work. To do so, we should configure the error handler in the application configuration as
follows:

return array(

......

’components’=>array(

http://yiiframework.com/doc/api/CErrorHandler
http://yiiframework.com/doc/api/CHttpException
http://yiiframework.com/doc/api/CErrorHandler

134 7. Special Topics

’errorHandler’=>array(

’errorAction’=>’site/error’,

),

),

);

In the above, we configure the CErrorHandler::errorAction property to be the route site/

error which refers to the error action in SiteController. We may use a different route if
needed.

We can write the error action like the following:

public function actionError()

{
if($error=Yii::app()->errorHandler->error)

$this->render(’error’, $error);

}

In the action, we first retrieve the detailed error information from CErrorHandler::error.
If it is not empty, we render the error view together with the error information. The error
information returned from CErrorHandler::error is an array with the following fields:

• code: the HTTP status code (e.g. 403, 500);

• type: the error type (e.g. CHttpException, PHP Error);

• message: the error message;

• file: the name of the PHP script file where the error occurs;

• line: the line number of the code where the error occurs;

• trace: the call stack of the error;

• source: the context source code where the error occurs.

Tip: The reason we check if CErrorHandler::error is empty or not is because the
error action may be directly requested by an end user, in which case there is no
error. Since we are passing the $error array to the view, it will be automatically
expanded to individual variables. As a result, in the view we can access directly the
variables such as $code, $type.

http://yiiframework.com/doc/api/CErrorHandler#errorAction
http://yiiframework.com/doc/api/CErrorHandler#error
http://yiiframework.com/doc/api/CErrorHandler#error
http://yiiframework.com/doc/api/CHttpException
http://yiiframework.com/doc/api/CErrorHandler#error

7.6 Web Service 135

7.5.3 Message Logging

A message of level error will always be logged when an error occurs. If the error is caused
by a PHP warning or notice, the message will be logged with category php; if the error is
caused by an uncaught exception, the category would be exception.ExceptionClassName

(for CHttpException its statusCode will also be appended to the category). One can thus
exploit the logging feature to monitor errors happened during application execution.

7.6 Web Service

Web service is a software system designed to support interoperable machine-to-machine
interaction over a network. In the context of Web applications, it usually refers to a set of
APIs that can be accessed over the Internet and executed on a remote system hosting the
requested service. For example, a Flex-based client may invoke a function implemented
on the server side running a PHP-based Web application. Web service relies on SOAP as
its foundation layer of the communication protocol stack.

Yii provides CWebService and CWebServiceAction to simplify the work of implementing
Web service in a Web application. The APIs are grouped into classes, called service
providers. Yii will generate for each class a WSDL specification which describes what
APIs are available and how they should be invoked by client. When an API is invoked by
a client, Yii will instantiate the corresponding service provider and call the requested API
to fulfill the request.

Note: CWebService relies on the PHP SOAP extension. Make sure you have
enabled it before trying the examples displayed in this section.

7.6.1 Defining Service Provider

As we mentioned above, a service provider is a class defining the methods that can be
remotely invoked. Yii relies on doc comment and class reflection to identify which methods
can be remotely invoked and what are their parameters and return value.

Let’s start with a simple stock quoting service. This service allows a client to request for
the quote of the specified stock. We define the service provider as follows. Note that we
define the provider class StockController by extending CController. This is not required.
We will explain why we do so shortly.

class StockController extends CController

{

http://yiiframework.com/doc/api/CHttpException
http://yiiframework.com/doc/api/CHttpException#statusCode
http://en.wikipedia.org/wiki/Web_service
http://www.adobe.com/products/flex/
http://en.wikipedia.org/wiki/SOAP
http://yiiframework.com/doc/api/CWebService
http://yiiframework.com/doc/api/CWebServiceAction
http://www.w3.org/TR/wsdl
http://yiiframework.com/doc/api/CWebService
http://www.php.net/manual/en/ref.soap.php
http://java.sun.com/j2se/javadoc/writingdoccomments/
http://www.php.net/manual/en/language.oop5.reflection.php
http://yiiframework.com/doc/api/CController

136 7. Special Topics

/**

* @param string the symbol of the stock

* @return float the stock price

* @soap

*/

public function getPrice($symbol)

{
$prices=array(’IBM’=>100, ’GOOGLE’=>350);

return isset($prices[$symbol])?$prices[$symbol]:0;

//...return stock price for $symbol

}
}

In the above, we declare the method getPrice to be a Web service API by marking it with
the tag @soap in its doc comment. We rely on doc comment to specify the data type of
the input parameters and return value. Additional APIs can be declared in the similar
way.

7.6.2 Declaring Web Service Action

Having defined the service provider, we need to make it available to clients. In particular,
we want to create a controller action to expose the service. This can be done easily by
declaring a CWebServiceAction action in a controller class. For our example, we will just
put it in StockController.

class StockController extends CController

{
public function actions()

{
return array(

’quote’=>array(

’class’=>’CWebServiceAction’,

),

);

}

/**

* @param string the symbol of the stock

* @return float the stock price

* @soap

*/

public function getPrice($symbol)

{
//...return stock price for $symbol

}
}

http://yiiframework.com/doc/api/CWebServiceAction

7.6 Web Service 137

That is all we need to create a Web service! If we try to access the action by URL http:

//hostname/path/to/index.php?r=stock/quote, we will see a lot of XML content which is
actually the WSDL for the Web service we defined.

Tip: By default, CWebServiceAction assumes the current controller is the service
provider. That is why we define the getPrice method inside the StockController

class.

7.6.3 Consuming Web Service

To complete the example, let’s create a client to consume the Web service we just created.
The example client is written in PHP, but it could be in other languages, such as Java,
C#, Flex, etc.

$client=new SoapClient(’http://hostname/path/to/index.php?r=stock/quote’);

echo $client->getPrice(’GOOGLE’);

Run the above script in either Web or console mode, and we shall see 350 which is the
price for GOOGLE.

7.6.4 Data Types

When declaring class methods and properties to be remotely accessible, we need to specify
the data types of the input and output parameters. The following primitive data types
can be used:

• str/string: maps to xsd:string;

• int/integer: maps to xsd:int;

• float/double: maps to xsd:float;

• bool/boolean: maps to xsd:boolean;

• date: maps to xsd:date;

• time: maps to xsd:time;

• datetime: maps to xsd:dateTime;

• array: maps to xsd:string;

• object: maps to xsd:struct;

http://yiiframework.com/doc/api/CWebServiceAction

138 7. Special Topics

• mixed: maps to xsd:anyType.

If a type is not any of the above primitive types, it is considered as a composite type
consisting of properties. A composite type is represented in terms of a class, and its
properties are the class’ public member variables marked with @soap in their doc comments.

We can also use array type by appending [] to the end of a primitive or composite type.
This would specify an array of the specified type.

Below is an example defining the getPosts Web API which returns an array of Post objects.

class PostController extends CController

{
/**

* @return Post[] a list of posts

* @soap

*/

public function getPosts()

{
return Post::model()->findAll();

}
}

class Post extends CActiveRecord

{
/**

* @var integer post ID

* @soap

*/

public $id;

/**

* @var string post title

* @soap

*/

public $title;

public static function model($className= CLASS)

{
return parent::model($className);

}
}

7.6.5 Class Mapping

In order to receive parameters of composite type from client, an application needs to
declare the mapping from WSDL types to the corresponding PHP classes. This is done

7.7 Internationalization 139

by configuring the classMap property of CWebServiceAction.

class PostController extends CController

{
public function actions()

{
return array(

’service’=>array(

’class’=>’CWebServiceAction’,

’classMap’=>array(

’Post’=>’Post’, // or simply ’Post’

),

),

);

}
......

}

7.6.6 Intercepting Remote Method Invocation

By implementing the IWebServiceProvider interface, a sevice provider can intercept re-
mote method invocations. In IWebServiceProvider::beforeWebMethod, the provider may
retrieve the current CWebService instance and obtain the the name of the method cur-
rently being requested via CWebService::methodName. It can return false if the remote
method should not be invoked for some reason (e.g. unauthorized access).

7.7 Internationalization

Internationalization (I18N) refers to the process of designing a software application so
that it can be adapted to various languages and regions without engineering changes. For
Web applications, this is of particular importance because the potential users may be from
worldwide.

Yii provides support for I18N in several aspects.

• It provides the locale data for each possible language and variant.

• It provides message and file translation service.

• It provides locale-dependent date and time formatting.

• It provides locale-dependent number formatting.

In the following subsections, we will elaborate each of the above aspects.

http://yiiframework.com/doc/api/CWebServiceAction#classMap
http://yiiframework.com/doc/api/CWebServiceAction
http://yiiframework.com/doc/api/IWebServiceProvider
http://yiiframework.com/doc/api/IWebServiceProvider#beforeWebMethod
http://yiiframework.com/doc/api/CWebService
http://yiiframework.com/doc/api/CWebService#methodName

140 7. Special Topics

7.7.1 Locale and Language

Locale is a set of parameters that defines the user’s language, country and any special
variant preferences that the user wants to see in their user interface. It is usually identified
by an ID consisting of a language ID and a region ID. For example, the ID en US stands
for the locale of English and United States. For consistency, all locale IDs in Yii are
canonicalized to the format of LanguageID or LanguageID RegionID in lower case (e.g. en,
en us).

Locale data is represented as a CLocale instance. It provides locale-dependent information,
including currency symbols, number symbols, currency formats, number formats, date and
time formats, and date-related names. Since the language information is already implied in
the locale ID, it is not provided by CLocale. For the same reason, we often interchangeably
using the term locale and language.

Given a locale ID, one can get the corresponding CLocale instance by CLocale::getInstance($localeID)

or CApplication::getLocale($localeID).

Info: Yii comes with locale data for nearly every language and region. The data
is obtained from Common Locale Data Repository (CLDR). For each locale, only a
subset of the CLDR data is provided as the original data contains much rarely used
information.

For an Yii application, we differentiate its target language from source language. The
target language is the language (locale) of the users that the application is targeted at,
while the source language refers to the language (locale) that the application source files
are written in. Internationalization occurs only when the two languages are different.

One can configure target language in the application configuration, or change it dynami-
cally before any internationalization occurs.

Tip: Sometimes, we may want to set the target language as the language preferred
by a user (specified in user’s browser preference). To do so, we can retrieve the user
preferred language ID using CHttpRequest::preferredLanguage.

7.7.2 Translation

The most needed I18N feature is perhaps translation, including message translation and
view translation. The former translates a text message to the desired language, while the
latter translates a whole file to the desired language.

http://yiiframework.com/doc/api/CLocale
http://yiiframework.com/doc/api/CLocale
http://yiiframework.com/doc/api/CLocale
http://unicode.org/cldr/
http://yiiframework.com/doc/api/CApplication#language
http://yiiframework.com/doc/api/CApplication#sourceLanguage
http://yiiframework.com/doc/api/CApplication#language
http://yiiframework.com/doc/api/CHttpRequest#preferredLanguage

7.7 Internationalization 141

A translation request consists of the object to be translated, the source language that the
object is in, and the target language that the object needs to be translated to. In Yii, the
source language is default to the application source language while the target language
is default to the application language. If the source and target languages are the same,
translation will not occur.

Message Translation

Message translation is done by calling Yii::t(). The method translates the given message
from source language to target language.

When translating a message, its category has to be specified since a message may be
translated differently under different categories (contexts). The category yii is reserved
for messages used by the Yii framework core code.

Messages can contain parameter placeholders which will be replaced with the actual pa-
rameter values when calling Yii::t(). For example, the following message translation re-
quest would replace the {alias} placeholder in the original message with the actual alias
value.

Yii::t(’yii’, ’Path alias "{alias}" is redefined.’,

array(’{alias}’=>$alias))

Note: Messages to be translated must be constant strings. They should not contain
variables that would change message content (e.g. "Invalid {$message} content.

"). Use parameter placeholders if a message needs to vary according to some pa-
rameters.

Translated messages are stored in a repository called message source. A message source is
represented as an instance of CMessageSource or its child class. When Yii::t() is invoked,
it will look for the message in the message source and return its translated version if it is
found.

Yii comes with the following types of message sources. You may also extend CMessage-
Source to create your own message source type.

• CPhpMessageSource: the message translations are stored as key-value pairs in a
PHP array. The original message is the key and the translated message is the value.
Each array represents the translations for a particular category of messages and is

http://yiiframework.com/doc/api/CApplication#sourceLanguage
http://yiiframework.com/doc/api/CApplication#language
http://yiiframework.com/doc/api/YiiBase#t
http://yiiframework.com/doc/api/CApplication#sourceLanguage
http://yiiframework.com/doc/api/CApplication#language
http://yiiframework.com/doc/api/YiiBase#t
http://yiiframework.com/doc/api/CMessageSource
http://yiiframework.com/doc/api/YiiBase#t
http://yiiframework.com/doc/api/CMessageSource
http://yiiframework.com/doc/api/CMessageSource
http://yiiframework.com/doc/api/CPhpMessageSource

142 7. Special Topics

stored in a separate PHP script file whose name is the category name. The PHP
translation files for the same language are stored under the same directory named
as the locale ID. And all these directories are located under the directory specified
by basePath.

• CGettextMessageSource: the message translations are stored as GNU Gettext files.

• CDbMessageSource: the message translations are stored in database tables. For
more details, see the API documentation for CDbMessageSource.

A message source is loaded as an application component. Yii pre-declares an application
component named messages to store messages that are used in user application. By default,
the type of this message source is CPhpMessageSource and the base path for storing the
PHP translation files is protected/messages.

In summary, in order to use message translation, the following steps are needed:

1. Call Yii::t() at appropriate places;

2. Create PHP translation files as protected/messages/LocaleID/CategoryName.php. Each
file simply returns an array of message translations. Note, this assumes you are using
the default CPhpMessageSource to store the translated messages.

3. Configure CApplication::sourceLanguage and CApplication::language.

Tip: The yiic tool in Yii can be used to manage message translations when CPh-
pMessageSource is used as the message source. Its message command can automat-
ically extract messages to be translated from selected source files and merge them
with existing translations if necessary.

Starting from version 1.0.10, when using CPhpMessageSource to manage message source,
messages for a module can be specially managed and used. In particular, if a message
belongs to a module whose class name is Xyz, then the message category can be specified
in the format of Xyz.categoryName. The corresponding message file will be assumed to be
ModulePath/messages/LanguageID/categoryName.php, where ModulePath refers to the direc-
tory that contains the module class file. And when using Yii::t() to translate a module
message, the following format should be used, instead:

Yii::t(’Xyz.categoryName’, ’message to be translated’)

http://yiiframework.com/doc/api/CPhpMessageSource#basePath
http://yiiframework.com/doc/api/CGettextMessageSource
http://www.gnu.org/software/gettext/
http://yiiframework.com/doc/api/CDbMessageSource
http://yiiframework.com/doc/api/CDbMessageSource
http://yiiframework.com/doc/api/CApplication#messages
http://yiiframework.com/doc/api/CPhpMessageSource
http://yiiframework.com/doc/api/YiiBase#t
http://yiiframework.com/doc/api/CPhpMessageSource
http://yiiframework.com/doc/api/CApplication#sourceLanguage
http://yiiframework.com/doc/api/CApplication#language
http://yiiframework.com/doc/api/CPhpMessageSource
http://yiiframework.com/doc/api/CPhpMessageSource
http://yiiframework.com/doc/api/CPhpMessageSource

7.7 Internationalization 143

Since version 1.0.2, Yii has added the support for choice format. Choice format refers to
choosing a translated according to a given number value. For example, in English the
word ’book’ may either take a singular form or a plural form depending on the number of
books, while in other languages, the word may not have different form (such as Chinese)
or may have more complex plural form rules (such as Russian). Choice format solves this
problem in a simple yet effective way.

To use choice format, a translated message must consist of a sequence of expression-
message pairs separated by |, as shown below:

’expr1#message1|expr2#message2|expr3#message3’

where exprN refers to a valid PHP expression which evaluates to a boolean value indicating
whether the corresponding message should be returned. Only the message corresponding
to the first expression that evaluates to true will be returned. An expression can contain
a special variable named n (note, it is not $n) which will take the number value passed as
the first message parameter. For example, assuming a translated message is:

’n==1#one book|n>1#many books’

and we are passing a number value 2 in the message parameter array when calling Yii::t(),
we would obtain many books as the final translated message.

As a shortcut notation, if an expression is a number, it will be treated as n==Number.
Therefore, the above translated message can be also be written as:

’1#one book|n>1#many books’

File Translation

File translation is accomplished by calling CApplication::findLocalizedFile(). Given the
path of a file to be translated, the method will look for a file with the same name under
the LocaleID subdirectory. If found, the file path will be returned; otherwise, the original
file path will be returned.

File translation is mainly used when rendering a view. When calling one of the render
methods in a controller or widget, the view files will be translated automatically. For
example, if the target language is zh cn while the source language is en us, rendering a view

http://yiiframework.com/doc/api/CChoiceFormat
http://yiiframework.com/doc/api/YiiBase#t
http://yiiframework.com/doc/api/CApplication#findLocalizedFile
http://yiiframework.com/doc/api/CApplication#language
http://yiiframework.com/doc/api/CApplication#sourceLanguage

144 7. Special Topics

named edit would resulting in searching for the view file protected/views/ControllerID/

zh cn/edit.php. If the file is found, this translated version will be used for rendering;
otherwise, the file protected/views/ControllerID/edit.php will be rendered instead.

File translation may also be used for other purposes, for example, displaying a translated
image or loading a locale-dependent data file.

7.7.3 Date and Time Formatting

Date and time are often in different formats in different countries or regions. The task of
date and time formatting is thus to generate a date or time string that fits for the specified
locale. Yii provides CDateFormatter for this purpose.

Each CDateFormatter instance is associated with a target locale. To get the format-
ter associated with the target locale of the whole application, we can simply access the
dateFormatter property of the application.

The CDateFormatter class mainly provides two methods to format a UNIX timestamp.

• format: this method formats the given UNIX timestamp into a string according to
a customized pattern (e.g. $dateFormatter->format(’yyyy-MM-dd’,$timestamp)).

• formatDateTime: this method formats the given UNIX timestamp into a string
according to a pattern predefined in the target locale data (e.g. short format of
date, long format of time).

7.7.4 Number Formatting

Like data and time, numbers may also be formatted differently in different countries
or regions. Number formatting includes decimal formatting, currency formatting and
percentage formatting. Yii provides CNumberFormatter for these tasks.

To get the number formatter associated with the target locale of the whole application,
we can access the numberFormatter property of the application.

The following methods are provided by CNumberFormatter to format an integer or double
value.

• format: this method formats the given number into a string according to a cus-
tomized pattern (e.g. $numberFormatter->format(’#,##0.00’,$number)).

• formatDecimal: this method formats the given number using the decimal pattern
predefined in the target locale data.

http://yiiframework.com/doc/api/CDateFormatter
http://yiiframework.com/doc/api/CDateFormatter
http://yiiframework.com/doc/api/CApplication#dateFormatter
http://yiiframework.com/doc/api/CDateFormatter
http://yiiframework.com/doc/api/CDateFormatter#format
http://yiiframework.com/doc/api/CDateFormatter#formatDateTime
http://yiiframework.com/doc/api/CNumberFormatter
http://yiiframework.com/doc/api/CApplication#numberFormatter
http://yiiframework.com/doc/api/CNumberFormatter
http://yiiframework.com/doc/api/CNumberFormatter#format
http://yiiframework.com/doc/api/CNumberFormatter#formatDecimal

7.8 Using Alternative Template Syntax 145

• formatCurrency: this method formats the given number and currency code using
the currency pattern predefined in the target locale data.

• formatPercentage: this method formats the given number using the percentage pat-
tern predefined in the target locale data.

7.8 Using Alternative Template Syntax

Yii allows developers to use their own favorite template syntax (e.g. Prado, Smarty) to
write controller or widget views. This is achieved by writing and installing a viewRen-
derer application component. The view renderer intercepts the invocations of CBaseCon-
troller::renderFile, compiles the view file with customized template syntax, and renders
the compiling results.

Info: It is recommended to use customized template syntax only when writing views
that are less likely to be reused. Otherwise, people who are reusing the views would
be forced to use the same customized template syntax in their applications.

In the following, we introduce how to use CPradoViewRenderer, a view renderer that
allows developers to use the template syntax similar to that in Prado framework. For
people who want to develop their own view renderers, CPradoViewRenderer is a good
reference.

7.8.1 Using CPradoViewRenderer

To use CPradoViewRenderer, we just need to configure the application as follows:

return array(

’components’=>array(

......,

’viewRenderer’=>array(

’class’=>’CPradoViewRenderer’,

),

),

);

By default, CPradoViewRenderer will compile source view files and save the resulting
PHP files under the runtime directory. Only when the source view files are changed, will
the PHP files be re-generated. Therefore, using CPradoViewRenderer incurs very little
performance degradation.

http://yiiframework.com/doc/api/CNumberFormatter#formatCurrency
http://yiiframework.com/doc/api/CNumberFormatter#formatPercentage
http://yiiframework.com/doc/api/CWebApplication#viewRenderer
http://yiiframework.com/doc/api/CWebApplication#viewRenderer
http://yiiframework.com/doc/api/CBaseController#renderFile
http://yiiframework.com/doc/api/CBaseController#renderFile
http://yiiframework.com/doc/api/CPradoViewRenderer
http://www.pradosoft.com/
http://yiiframework.com/doc/api/CPradoViewRenderer
http://yiiframework.com/doc/api/CPradoViewRenderer
http://yiiframework.com/doc/api/CPradoViewRenderer
http://yiiframework.com/doc/api/CPradoViewRenderer

146 7. Special Topics

Tip: While CPradoViewRenderer mainly introduces some new template tags to
make writing views easier and faster, you can still write PHP code as usual in the
source views.

In the following, we introduce the template tags that are supported by CPradoViewRen-
derer.

Short PHP Tags

Short PHP tags are shortcuts to writing PHP expressions and statements in a view. The
expression tag <%= expression %> is translated into <?php echo expression ?>; while the
statement tag <% statement %> to <?php statement ?>. For example,

<%= CHtml::textField($name,’value’); %>

<% foreach($models as $model): %>

is translated into

<?php echo CHtml::textField($name,’value’); ?>

<?php foreach($models as $model): ?>

Component Tags

Component tags are used to insert a widget in a view. It uses the following syntax:

<com:WidgetClass property1=value1 property2=value2 ...>

// body content for the widget

</com:WidgetClass>

// a widget without body content

<com:WidgetClass property1=value1 property2=value2 .../>

where WidgetClass specifies the widget class name or class path alias, and property initial
values can be either quoted strings or PHP expressions enclosed within a pair of curly
brackets. For example,

<com:CCaptcha captchaAction="captcha" showRefreshButton={false} />

http://yiiframework.com/doc/api/CPradoViewRenderer
http://yiiframework.com/doc/api/CPradoViewRenderer
http://yiiframework.com/doc/api/CPradoViewRenderer

7.8 Using Alternative Template Syntax 147

would be translated as

<?php $this->widget(’CCaptcha’, array(

’captchaAction’=>’captcha’,

’showRefreshButton’=>false)); ?>

Note: The value for showRefreshButton is specified as {false} instead of "false"
because the latter means a string instead of a boolean.

Cache Tags

Cache tags are shortcuts to using fragment caching. Its syntax is as follows,

<cache:fragmentID property1=value1 property2=value2 ...>

// content being cached

</cache:fragmentID >

where fragmentID should be an identifier that uniquely identifies the content being cached,
and the property-value pairs are used to configure the fragment cache. For example,

<cache:profile duration={3600}>
// user profile information here

</cache:profile >

would be translated as

<?php if($this->cache(’profile’, array(’duration’=>3600))): ?>

// user profile information here

<?php $this->endCache(); endif; ?>

Clip Tags

Like cache tags, clip tags are shortcuts to calling CBaseController::beginClip and CBaseC-
ontroller::endClip in a view. The syntax is as follows,

<clip:clipID>

// content for this clip

</clip:clipID >

http://yiiframework.com/doc/api/CBaseController#beginClip
http://yiiframework.com/doc/api/CBaseController#endClip
http://yiiframework.com/doc/api/CBaseController#endClip

148 7. Special Topics

where clipID is an identifier that uniquely identifies the clip content. The clip tags will
be translated as

<?php $this->beginClip(’clipID’); ?>

// content for this clip

<?php $this->endClip(); ?>

Comment Tags

Comment tags are used to write view comments that should only be visible to developers.
Comment tags will be stripped off when the view is displayed to end users. The syntax
for comment tags is as follows,

<!---

view comments that will be stripped off

--->

7.9 Console Applications

Console applications are mainly used by a Web application to perform offline work, such
as code generation, search index compiling, email sending, etc. Yii provides a framework
for writing console applications in an object-oriented and systematic way.

Yii represents each console task in terms of a command, and a console application instance
is used to dispatch a command line request to an appropriate command. The application
instance is created in an entry script. To execute a console task, we simply run the
corresponding command on the command line as follows,

php entryScript.php CommandName Param0 Param1 ...

where CommandName refers to the command name which is case-insensitive, and Param0,
Param1 and so on are parameters to be passed to the command instance.

The entry script for a console application is usually written like the following, similar to
that in a Web application,

defined(’YII DEBUG’) or define(’YII DEBUG’,true);

// include Yii bootstrap file

require once(’path/to/yii/framework/yii.php’);

// create application instance and run

$configFile=’path/to/config/file.php’;

Yii::createConsoleApplication($configFile)->run();

http://yiiframework.com/doc/api/CConsoleCommand
http://yiiframework.com/doc/api/CConsoleApplication

7.9 Console Applications 149

We then create command classes which should extend from CConsoleCommand. Each
command class should be named as its command name appended with Command. For
example, to define an email command, we should write an EmailCommand class. All com-
mand class files should be placed under the commands subdirectory of the application base
directory.

Tip: By configuring CConsoleApplication::commandMap, one can also have com-
mand classes in different naming conventions and located in different directories.

Writing a command class mainly involves implementing the CConsoleCommand::run method.
Command line parameters are passed as an array to this method. Below is an example:

class EmailCommand extends CConsoleCommand

{
public function run($args)

{
$receiver=$args[0];

// send email to $receiver

}
}

At any time in a command, we can access the console application instance via Yii::app().
Like a Web application instance, console application can also be configured. For example,
we can configure a db application component to access the database. The configuration
is usually specified as a PHP file and passed to the constructor of the console application
class (or createConsoleApplication in the entry script).

7.9.1 Using the yiic Tool

We have used the yiic tool to create our first application. The yiic tool is in fact
implemented as a console application whose entry script file is framework/yiic.php. Using
yiic, we can accomplish tasks such as creating a Web application skeleton, generating a
controller class or model class, generating code needed by CRUD operations, extracting
messages to be translated, etc.

We can enhance yiic by adding our own customized commands. To do so, we should
start with a skeleton application created using yiic webapp command, as described in
Creating First Yii Application. The yiic webapp command will generate two files under
the protected directory: yiic and yiic.bat. They are the local version of the yiic tool
created specifically for the Web application.

http://yiiframework.com/doc/api/CConsoleCommand
http://yiiframework.com/doc/api/CConsoleApplication#commandMap
http://yiiframework.com/doc/api/CConsoleCommand#run
http://yiiframework.com/doc/api/YiiBase#createConsoleApplication

150 7. Special Topics

We can then create our own commands under the protected/commands directory. Running
the local yiic tool, we will see that our own commands appearing together with the
standard ones. We can also create our own commands to be used when yiic shell is
used. To do so, just drop our command class files under the protected/commands/shell

directory.

7.10 Security

7.10.1 Cross-site Scripting Prevention

Cross-site scripting (also known as XSS) occurs when a web application gathers malicious
data from a user. Often attackers will inject JavaScript, VBScript, ActiveX, HTML, or
Flash into a vulnerable application to fool other application users and gather data from
them. For example, a poorly design forum system may display user input in forum posts
without any checking. An attacker can then inject a piece of malicious JavaScript code
into a post so that when other users read this post, the JavaScript runs unexpectedly on
their computers.

One of the most important measures to prevent XSS attacks is to check user input before
displaying them. One can do HTML-encoding with the user input to achieve this goal.
However, in some situations, HTML-encoding may not be preferable because it disables
all HTML tags.

Yii incorporates the work of HTMLPurifier and provides developers with a useful compo-
nent called CHtmlPurifier that encapsulates HTMLPurifier. This component is capable
of removing all malicious code with a thoroughly audited, secure yet permissive whitelist
and making sure the filtered content is standard-compliant.

The CHtmlPurifier component can be used as either a widget or a filter. When used as a
widget, CHtmlPurifier will purify contents displayed in its body in a view. For example,

<?php $this->beginWidget(’CHtmlPurifier’); ?>

...display user-entered content here...

<?php $this->endWidget(); ?>

7.10.2 Cross-site Request Forgery Prevention

Cross-Site Request Forgery (CSRF) attacks occur when a malicious web site causes a user’s
web browser to perform an unwanted action on a trusted site. For example, a malicious
web site has a page that contains an image tag whose src points to a banking site: http:

//bank.example/withdraw?transfer=10000&to=someone. If a user who has a login cookie
for the banking site happens to visit this malicous page, the action of transferring 10000

http://htmlpurifier.org/
http://yiiframework.com/doc/api/CHtmlPurifier
http://htmlpurifier.org/
http://yiiframework.com/doc/api/CHtmlPurifier
http://yiiframework.com/doc/api/CHtmlPurifier

7.10 Security 151

dollars to someone will be executed. Contrary to cross-site, which exploits the trust a user
has for a particular site, CSRF exploits the trust that a site has for a particular user.

To prevent CSRF attacks, it is important to abide to the rule that GET requests should
only be allowed to retrieve data rather than modify any data on the server. And for POST

requests, they should include some random value which can be recognized by the server
to ensure the form is submitted from and the result is sent back to the same origin.

Yii implements a CSRF prevention scheme to help defeat POST-based attacks. It is based
on storing a random value in a cookie and comparing this value with the value submitted
via the POST request.

By default, the CSRF prevention is disabled. To enable it, configure the CHttpRequest
application component in the application configuration as follows,

return array(

’components’=>array(

’request’=>array(

’enableCsrfValidation’=>true,

),

),

);

And to display a form, call CHtml::form instead of writing the HTML form tag directly.
The CHtml::form method will embed the necessary random value in a hidden field so that
it can be submitted for CSRF validation.

7.10.3 Cookie Attack Prevention

Protecting cookies from being attacked is of extreme importance, as session IDs are com-
monly stored in cookies. If one gets hold of a session ID, he essentially owns all relevant
session information.

There are several countermeasures to prevent cookies from being attacked.

• An application can use SSL to create a secure communication channel and only pass
the authentication cookie over an HTTPS connection. Attackers are thus unable to
decipher the contents in the transferred cookies.

• Expire sessions appropriately, including all cookies and session tokens, to reduce the
likelihood of being attacked.

• Prevent cross-site scripting which causes arbitrary code to run in a user’s browser
and expose his cookies.

http://yiiframework.com/doc/api/CHttpRequest
http://yiiframework.com/doc/api/CHtml#form
http://yiiframework.com/doc/api/CHtml#form

152 7. Special Topics

• Validate cookie data and detect if they are altered.

Yii implements a cookie validation scheme that prevents cookies from being modified. In
particular, it does HMAC check for the cookie values if cookie validation is enable.

Cookie validation is disabled by default. To enable it, configure the CHttpRequest appli-
cation component in the application configuration as follows,

return array(

’components’=>array(

’request’=>array(

’enableCookieValidation’=>true,

),

),

);

To make use of the cookie validation scheme provided by Yii, we also need to access cookies
through the cookies collection, instead of directly through $ COOKIES:

// retrieve the cookie with the specified name

$cookie=Yii::app()->request->cookies[$name];

$value=$cookie->value;

......

// send a cookie

$cookie=new CHttpCookie($name,$value);

Yii::app()->request->cookies[$name]=$cookie;

7.11 Performance Tuning

Performance of Web applications is affected by many factors. Database access, file system
operations, network bandwidth are all potential affecting factors. Yii has tried in every
aspect to reduce the performance impact caused by the framework. But still, there are
many places in the user application that can be improved to boost performance.

7.11.1 Enabling APC Extension

Enabling the PHP APC extension is perhaps the easiest way to improve the overall per-
formance of an application. The extension caches and optimizes PHP intermediate code
and avoids the time spent in parsing PHP scripts for every incoming request.

http://yiiframework.com/doc/api/CHttpRequest
http://yiiframework.com/doc/api/CHttpRequest#cookies
http://www.php.net/manual/en/book.apc.php

7.11 Performance Tuning 153

7.11.2 Disabling Debug Mode

Disabling debug mode is another easy way to improve performance. An Yii application
runs in debug mode if the constant YII DEBUG is defined as true. Debug mode is useful
during development stage, but it would impact performance because some components
cause extra burden in debug mode. For example, the message logger may record additional
debug information for every message being logged.

7.11.3 Using yiilite.php

When the PHP APC extension is enabled, we can replace yii.php with a different Yii
bootstrap file named yiilite.php to further boost the performance of an Yii-powered
application.

The file yiilite.php comes with every Yii release. It is the result of merging some com-
monly used Yii class files. Both comments and trace statements are stripped from the
merged file. Therefore, using yiilite.php would reduce the number of files being included
and avoid execution of trace statements.

Note, using yiilite.php without APC may actually reduce performance, because yiilite.

php contains some classes that are not necessarily used in every request and would take
extra parsing time. It is also observed that using yiilite.php is slower with some server
configurations, even when APC is turned on. The best way to judge whether to use
yiilite.php or not is to run a benchmark using the included hello world demo.

7.11.4 Using Caching Techniques

As described in the Caching section, Yii provides several caching solutions that may im-
prove the performance of a Web application significantly. If the generation of some data
takes long time, we can use the data caching approach to reduce the data generation fre-
quency; If a portion of page remains relatively static, we can use the fragment caching
approach to reduce its rendering frequency; If a whole page remains relative static, we can
use the page caching approach to save the rendering cost for the whole page.

If the application is using Active Record, we should turn on the schema caching to save
the time of parsing database schema. This can be done by configuring the CDbConnec-
tion::schemaCachingDuration property to be a value greater than 0.

Besides these application-level caching techniques, we can also use server-level caching
solutions to boost the application performance. As a matter of fact, the APC caching we
described earlier belongs to this category. There are other server techniques, such as Zend
Optimizer, eAccelerator, Squid, to name a few.

http://www.php.net/manual/en/book.apc.php
http://yiiframework.com/doc/api/CDbConnection#schemaCachingDuration
http://yiiframework.com/doc/api/CDbConnection#schemaCachingDuration
http://Zend.com/ZendOptimizer
http://Zend.com/ZendOptimizer
http://eaccelerator.net/
http://www.squid-cache.org/

154 7. Special Topics

7.11.5 Database Optimization

Fetching data from database is often the main performance bottleneck in a Web applica-
tion. Although using caching may alleviate the performance hit, it does not fully solve
the problem. When the database contains enormous data and the cached data is invalid,
fetching the latest data could be prohibitively expensive without proper database and
query design.

Design index wisely in a database. Indexing can make SELECT queries much faster, but it
may slow down INSERT, UPDATE or DELETE queries.

For complex queries, it is recommended to create a database view for it instead of issuing
the queries inside the PHP code and asking DBMS to parse them repetitively.

Do not overuse Active Record. Although Active Record is good at modelling data in an
OOP fashion, it actually degrades performance due to the fact that it needs to create one
or several objects to represent each row of query result. For data intensive applications,
using DAO or database APIs at lower level could be a better choice.

Last but not least, use LIMIT in your SELECT queries. This avoids fetching overwhelming
data from database and exhausting the memory allocated to PHP.

7.11.6 Minimizing Script Files

Complex pages often need to include many external JavaScript and CSS files. Because
each file would cause one extra round trip to the server and back, we should minimize the
number of script files by merging them into fewer ones. We should also consider reducing
the size of each script file to reduce the network transmission time. There are many tools
around to help on these two aspects.

For a page generated by Yii, chances are that some script files are rendered by components
that we do not want to modify (e.g. Yii core components, third-party components). In
order to minimizing these script files, we need two steps.

Note: The scriptMap feature described in the following has been available since
version 1.0.3.

First, we declare the scripts to be minimized by configuring the scriptMap property of the
clientScript application component. This can be done either in the application configura-
tion or in code. For example,

$cs=Yii::app()->clientScript;

http://yiiframework.com/doc/api/CClientScript#scriptMap
http://yiiframework.com/doc/api/CWebApplication#clientScript

7.11 Performance Tuning 155

$cs->scriptMap=array(

’jquery.js’=>’/js/all.js’,

’jquery.ajaxqueue.js’=>’/js/all.js’,

’jquery.metadata.js’=>’/js/all.js’,

......

);

What the above code does is that it maps those JavaScript files to the URL /js/all.js.
If any of these JavaScript files need to be included by some components, Yii will include
the URL (once) instead of the individual script files.

Second, we need to use some tools to merge (and perhaps compress) the JavaScript files
into a single one and save it as js/all.js.

The same trick also applies to CSS files.

We can also improve page loading speed with the help of Google AJAX Libraries API.
For example, we can include jquery.js from Google servers instead of our own server. To
do so, we first configure the scriptMap as follows,

$cs=Yii::app()->clientScript;

$cs->scriptMap=array(

’jquery.js’=>false,

’jquery.ajaxqueue.js’=>false,

’jquery.metadata.js’=>false,

......

);

By mapping these script files to false, we prevent Yii from generating the code to include
these files. Instead, we write the following code in our pages to explicitly include the script
files from Google,

<head>

<?php echo CGoogleApi::init(); ?>

<?php echo CHtml::script(

CGoogleApi::load(’jquery’,’1.3.2’) . "\n" .

CGoogleApi::load(’jquery.ajaxqueue.js’) . "\n" .

CGoogleApi::load(’jquery.metadata.js’)

); ?>

......

</head>

http://code.google.com/apis/ajaxlibs/

	Contents
	License
	Getting Started
	The Definitive Guide to Yii
	New Features
	Version 1.0.10
	Version 1.0.8
	Version 1.0.7
	Version 1.0.6
	Version 1.0.5

	What is Yii
	Requirements
	What is Yii Best for?
	How is Yii Compared with Other Frameworks?

	Installation
	Requirements

	Creating First Yii Application
	Connecting to Database
	Implementing CRUD Operations

	Fundamentals
	Model-View-Controller (MVC)
	A Typical Workflow

	Entry Script
	Debug Mode

	Application
	Application Configuration
	Application Base Directory
	Application Component
	Core Application Components
	Application Lifecycles

	Controller
	Route
	Controller Instantiation
	Action
	Filter

	Model
	View
	Layout
	Widget
	System View

	Component
	Component Property
	Component Event
	Component Behavior

	Module
	Creating Module
	Using Module
	Nested Module

	Path Alias and Namespace
	Conventions
	URL
	Code
	Configuration
	File
	Directory

	Development Workflow

	Working with Forms
	Working with Form
	Creating Model
	Defining Model Class
	Declaring Validation Rules
	Securing Attribute Assignments
	Triggering Validation
	Retrieving Validation Errors
	Attribute Labels

	Creating Action
	Creating Form
	Collecting Tabular Input

	Working with Databases
	Working with Database
	Data Access Objects (DAO)
	Establishing Database Connection
	Executing SQL Statements
	Fetching Query Results
	Using Transactions
	Binding Parameters
	Binding Columns

	Active Record
	Establishing DB Connection
	Defining AR Class
	Creating Record
	Reading Record
	Updating Record
	Deleting Record
	Data Validation
	Comparing Records
	Customization
	Using Transaction with AR
	Named Scopes

	Relational Active Record
	Declaring Relationship
	Performing Relational Query
	Relational Query Options
	Dynamic Relational Query Options
	Statistical Query
	Relational Query with Named Scopes

	Caching
	Caching
	Data Caching
	Cache Dependency

	Fragment Caching
	Caching Options
	Nested Caching

	Page Caching
	Dynamic Content

	Extending Yii
	Overview
	Using Extensions
	Application Component
	Behavior
	Widget
	Action
	Filter
	Controller
	Validator
	Console Command
	Module
	Generic Component

	Creating Extensions
	Application Component
	Behavior
	Widget
	Action
	Filter
	Controller
	Validator
	Console Command
	Module
	Generic Component

	Using 3rd-Party Libraries

	Special Topics
	URL Management
	Creating URLs
	User-friendly URLs

	Authentication and Authorization
	Defining Identity Class
	Login and Logout
	Access Control Filter
	Role-Based Access Control

	Theming
	Logging
	Message Logging
	Message Routing
	Performance Profiling

	Error Handling
	Raising Exceptions
	Displaying Errors
	Message Logging

	Web Service
	Defining Service Provider
	Declaring Web Service Action
	Consuming Web Service
	Data Types
	Class Mapping
	Intercepting Remote Method Invocation

	Internationalization
	Locale and Language
	Translation
	Date and Time Formatting
	Number Formatting

	Using Alternative Template Syntax
	Using CPradoViewRenderer

	Console Applications
	Using the yiic Tool

	Security
	Cross-site Scripting Prevention
	Cross-site Request Forgery Prevention
	Cookie Attack Prevention

	Performance Tuning
	Enabling APC Extension
	Disabling Debug Mode
	Using yiilite.php
	Using Caching Techniques
	Database Optimization
	Minimizing Script Files

