
Building a Blog System using Yii

Qiang Xue

Copyright 2008-2009. All Rights Reserved.

Contents

Contents i

License v

1 Getting Started 1

1.1 Building a Blog System using Yii . 1

1.2 Testdriving with Yii . 1

1.2.1 Installing Yii . 1

1.2.2 Creating Skeleton Application . 2

1.2.3 Application Workflow . 3

1.3 Requirements Analysis . 4

1.4 Overall Design . 5

2 Initial Prototyping 9

2.1 Setting Up Database . 9

2.1.1 Creating Database . 9

2.1.2 Establishing Database Connection 9

2.2 Scaffolding . 11

2.3 Authenticating User . 14

2.4 Summary . 17

3 Post Management 19

ii Contents

3.1 Customizing Post Model . 19

3.1.1 Customizing rules() Method . 19

3.1.2 Customizing relations() Method 20

3.1.3 Representing Status in Text . 21

3.2 Creating and Updating Posts . 23

3.2.1 Customizing Access Control . 23

3.2.2 Customizing create and update Operations 24

3.3 Displaying Posts . 25

3.3.1 Customizing view Operation . 25

3.3.2 Customizing index Operation . 27

3.4 Managing Posts . 28

3.4.1 Listing Posts in Tabular View . 28

3.4.2 Deleting Posts . 29

4 Comment Management 33

4.1 Customizing Comment Model . 33

4.1.1 Customizing rules() Method . 33

4.1.2 Customizing attributeLabels() Method 33

4.1.3 Customizing Saving Process . 34

4.2 Creating and Displaying Comments . 34

4.2.1 Displaying Comments . 34

4.2.2 Creating Comments . 35

4.3 Managing Comments . 37

4.3.1 Updating and Deleting Comments 37

4.3.2 Approving Comments . 37

Contents iii

5 Portlets 39

5.1 Customizing Page Layout . 39

5.2 Creating User Menu Portlet . 41

5.2.1 Creating UserMenu Class . 41

5.2.2 Creating userMenu View . 42

5.2.3 Using UserMenu Portlet . 42

5.2.4 Testing UserMenu Portlet . 43

5.2.5 Summary . 43

5.3 Creating Tag Cloud Portlet . 43

5.3.1 Creating TagCloud Class . 43

5.3.2 Using TagCloud Portlet . 44

5.4 Creating Recent Comments Portlet . 45

5.4.1 Creating RecentComments Class . 45

5.4.2 Creating recentComments View . 46

5.4.3 Using RecentComments Portlet . 46

6 Final Work 47

6.1 Beautifying URLs . 47

6.2 Logging Errors . 48

6.3 Final Tune-up and Deployment . 49

6.3.1 Changing Home Page . 49

6.3.2 Enabling Schema Caching . 49

6.3.3 Disabling Debugging Mode . 50

6.3.4 Deploying the Application . 50

6.4 Future Enhancements . 51

iv Contents

6.4.1 Using a Theme . 51

6.4.2 Internationalization . 51

6.4.3 Improving Performance with Cache 51

6.4.4 Adding New Features . 52

License of Yii

The Yii framework is free software. It is released under the terms of the following BSD
License.

Copyright c©2008-2009 by Yii Software LLC. All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are
permitted provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of
conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list of
conditions and the following disclaimer in the documentation and/or other materials
provided with the distribution.

3. Neither the name of Yii Software LLC nor the names of its contributors may be
used to endorse or promote products derived from this software without specific
prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS ”AS

IS” AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE

IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PUR-

POSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBU-

TORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR

CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUB-

STITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUP-

TION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,

STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY

WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF

SUCH DAMAGE.

vi Contents

Chapter 1

Getting Started

1.1 Building a Blog System using Yii

This tutorial describes how to use Yii to develop a blog application shown as the blog demo
which can be found in the Yii release files. It explains in detail every step to be taken
during the development, which may also be applied in developing other Web applications.
As a complement to the Guide and the Class Reference of Yii, this tutorial aims to show
practical usage of Yii instead of thorough and definitive description.

Readers of this tutorial are not required to have prior knowledge about Yii. However, basic
knowledge of object-oriented programming (OOP) and database programming would help
readers to understand the tutorial more easily.

This tutorial is released under the Terms of Yii Documentation.

1.2 Testdriving with Yii

In this section, we describe how to create a skeleton application that will serve as our
starting point. For simplicity, we assume that the document root of our Web server is
/wwwroot and the corresponding URL is http://www.example.com/.

1.2.1 Installing Yii

We first install the Yii framework. Grab a copy of the Yii release file (version 1.1.0 or
above) from www.yiiframework.com and unpack it to the directory /wwwroot/yii. Double
check to make sure that there is a directory /wwwroot/yii/framework.

Tip: The Yii framework can be installed anywhere in the file system, not necessarily
under a Web folder. Its framework directory contains all framework code and is
the only framework directory needed when deploying an Yii application. A single
installation of Yii can be used by multiple Yii applications.

http://www.yiiframework.com/demos/blog/
http://www.yiiframework.com/doc/guide/
http://www.yiiframework.com/doc/api/
http://www.yiiframework.com/doc/terms/
http://www.yiiframework.com/download

2 1. Getting Started

After installing Yii, open a browser window and access the URL http://www.example.

com/yii/requirements/index.php. It shows the requirement checker provided in the Yii
release. For our blog application, besides the minimal requirements needed by Yii, we also
need to enable both the pdo and pdo sqlite PHP extensions so that we can access SQLite
databases.

1.2.2 Creating Skeleton Application

We then use the yiic tool to create a skeleton application under the directory /wwwroot/

blog. The yiic tool is a command line tool provided in the Yii release. It can be used to
generate code to reduce certain repetitive coding tasks.

Open a command window and execute the following command:

% /wwwroot/yii/framework/yiic webapp /wwwroot/blog

Create a Web application under ’/wwwroot/blog’? [Yes|No]y

......

Tip: In order to use the yiic tool as shown above, the CLI PHP program must be
on the command search path. If not, the following command may be used instead:

path/to/php /wwwroot/yii/framework/yiic.php webapp /wwwroot/blog

To try out the application we just created, open a Web browser and navigate to the URL
http://www.example.com/blog/index.php. We should see that our skeleton application
already has four fully functional pages: the homepage, the about page, the contact page
and the login page.

In the following, we briefly describe what we have in this skeleton application.

Entry Script

We have an entry script file /wwwroot/blog/index.php which has the following content:

<?php

$yii=’/wwwroot/framework/yii.php’;

$config=dirname(FILE).’/protected/config/main.php’;

// remove the following line when in production mode

defined(’YII DEBUG’) or define(’YII DEBUG’,true);

http://www.yiiframework.com/doc/guide/basics.entry

1.2 Testdriving with Yii 3

require once($yii);

Yii::createWebApplication($config)->run();

This is the only script that Web users can directly access. The script first includes the
Yii bootstrap file yii.php. It then creates an application instance with the specified
configuration and executes the application.

Base Application Directory

We also have an application base directory /wwwroot/blog/protected. The majority of our
code and data will be placed under this directory, and it should be protected from being
accessed by Web users. For Apache httpd Web server, we place under this directory a
.htaccess file with the following content:

deny from all

For other Web servers, please refer to the corresponding manual on how to protect a
directory from being accessed by Web users.

1.2.3 Application Workflow

To help understand how Yii works, we describe the main workflow in our skeleton appli-
cation when a user is accessing its contact page:

1. The user requests the URL http://www.example.com/blog/index.php?r=site/contact;

2. The entry script is executed by the Web server to process the request;

3. An application instance is created and configured with initial property values speci-
fied in the application configuration file /wwwroot/blog/protected/config/main.php;

4. The application resolves the request into a controller and a controller action. For the
contact page request, it is resolved as the site controller and the contact action (the
actionContact method in /wwwroot/blog/protected/controllers/SiteController.php);

5. The application creates the site controller in terms of a SiteController instance
and then executes it;

6. The SiteController instance executes the contact action by calling its actionContact()
method;

http://www.yiiframework.com/doc/guide/basics.application
http://www.yiiframework.com/doc/guide/basics.application#application-base-directory
http://httpd.apache.org/
http://www.yiiframework.com/doc/guide/basics.entry
http://www.yiiframework.com/doc/guide/basics.application
http://www.yiiframework.com/doc/guide/basics.controller
http://www.yiiframework.com/doc/guide/basics.controller#action

4 1. Getting Started

7. The actionContact method renders a view named contact to the Web user. Inter-
nally, this is achieved by including the view file /wwwroot/blog/protected/views/

site/contact.php and embedding the result into the layout file /wwwroot/blog/

protected/views/layouts/main.php.

1.3 Requirements Analysis

The blog system that we are going to develop is a single user system. The owner of the
system will be able to perform the following actions:

• Login and logout

• Create, update and delete posts

• Publish, unpublish and archive posts

• Approve and delete comments

All other users are guest users who can perform the following actions:

• Read posts

• Create comments

Additional Requirements for this system include:

• The homepage of the system should display a list of the most recent posts.

• If a page contains more than 10 posts, they should be displayed in pages.

• The system should display a post together with its comments.

• The system should be able to list posts with a specified tag.

• The system should show a cloud of tags indicating their use frequencies.

• The system should show a list of most recent comments.

• The system should be themeable.

• The system should use SEO-friendly URLs.

http://www.yiiframework.com/doc/guide/basics.view
http://www.yiiframework.com/doc/guide/basics.view#layout

1.4 Overall Design 5

1.4 Overall Design

Based on the analysis of the requirements, we decide to use the following database tables
to store the persistent data for our blog application:

• tbl user stores the user information, including username and password.

• tbl post stores the blog post information. It mainly consists of the following columns:

– title: required, title of the post;

– content: required, body content of the post which uses the Markdown format;

– status: required, status of the post, which can be one of following values:

∗ 1, meaning the post is in draft and is not visible to public;

∗ 2, meaning the post is published to public;

∗ 3, meaning the post is outdated and is not visible in the post list (still
accessible individually, though).

– tags: optional, a list of comma-separated words categorizing the post.

• tbl comment stores the post comment information. Each comment is associated with
a post and mainly consists of the following columns:

– name: required, the author name;

– email: required, the author email;

– website: optional, the author website URL;

– content: required, the comment content in plain text format.

– status: required, status of the comment, which indicates whether the comment
is approved (value 2) or not (value 1).

• tbl tag stores post tag frequency information that is needed to implement the tag
cloud feature. The table mainly contains the following columns:

– name: required, the unique tag name;

– frequency: required, the number of times that the tag appears in posts.

• tbl lookup stores generic lookup information. It is essentially a map between integer
values and text strings. The former is the data representation in our code, while the
latter is the corresponding presentation to end users. For example, we use integer
1 to represent the draft post status and string Draft to display this status to end
users. This table mainly contains the following columns:

http://daringfireball.net/projects/markdown/syntax

6 1. Getting Started

– name: the textual representation of the data item that is to be displayed to end
users;

– code: the integer representation of the data item;

– type: the type of the data item;

– position: the relative display order of the data item among other items of the
same type.

The following entity-relation (ER) diagram shows the table structure and relationships
about the above tables.

Figure 1.1: Entity-Relation Diagram of the Blog Database

Complete SQL statements corresponding to the above ER diagram may be found in
the blog demo. In our Yii installation, they are in the file /wwwroot/yii/demos/blog/

protected/data/schema.sqlite.sql.

Info: We name all our table names and column names in lower case. This is because
different DBMS often have different case-sensitivity treatment and we want to avoid
troubles like this.

We also prefix all our tables with tbl . This serves for two purposes. First, the prefix
introduces a namespace to these tables in case when they need to coexist with other
tables in the same database, which often happens in a shared hosting environment
where a single database is being used by multiple applications. Second, using table
prefix reduces the possibility of having some table names that are reserved keywords
in DBMS.

http://www.yiiframework.com/demos/blog/

1.4 Overall Design 7

We divide the development of our blog application into the following milestones.

• Milestone 1: creating a prototype of the blog system. It should consist of most of
the required functionalities.

• Milestone 2: completing post management. It includes creating, listing, showing,
updating and deleting posts.

• Milestone 3: completing comment management. It includes creating, listing, ap-
proving, updating and deleting post comments.

• Milestone 4: implementing portlets. It includes user menu, login, tag cloud and
recent comments portlets.

• Milestone 5: final tune-up and deployment.

8 1. Getting Started

Chapter 2

Initial Prototyping

2.1 Setting Up Database

Having created a skeleton application and finished the database design, in this section we
will create the blog database and establish the connection to it in the skeleton application.

2.1.1 Creating Database

We choose to create a SQLite database. Because the database support in Yii is built on top
of PDO, we can easily switch to use a different type of DBMS (e.g. MySQL, PostgreSQL)
without the need to change our application code.

We create the database file blog.db under the directory /wwwroot/blog/protected/data.
Note that both the directory and the database file have to be writable by the Web server
process, as required by SQLite. We may simply copy the database file from the blog
demo in our Yii installation which is located at /wwwroot/yii/demos/blog/protected/data/
blog.db. We may also generate the database by executing the SQL statements in the file
/wwwroot/yii/demos/blog/protected/data/schema.sqlite.sql.

Tip: To execute SQL statements, we may use the sqlite3 command line tool that
can be found in the SQLite official website.

2.1.2 Establishing Database Connection

To use the blog database in the skeleton application we created, we need to modify its
application configuration which is stored in the PHP script /wwwroot/blog/protected/

config/main.php. The script returns an associative array consisting of name-value pairs,
each of which is used to initialize a writable property of the application instance.

We configure the db component as follows,

http://www.php.net/manual/en/book.pdo.php
http://www.sqlite.org/download.html
http://www.yiiframework.com/doc/guide/basics.application#application-configuration
http://www.yiiframework.com/doc/guide/basics.application

10 2. Initial Prototyping

return array(

......

’components’=>array(

......

’db’=>array(

’connectionString’=>’sqlite:/wwwroot/blog/protected/data/blog.db’,

’tablePrefix’=>’tbl ’,

),

),

......

);

The above configuration says that we have a db application component whose connectionString
property should be initialized as sqlite:/wwwroot/blog/protected/data/blog.db and whose
tablePrefix property should be tbl .

With this configuration, we can access the DB connection object using Yii::app()->db

at any place in our code. Note that Yii::app() returns the application instance that we
create in the entry script. If you are interested in possible methods and properties that the
DB connection has, you may refer to its class reference. However, in most cases we are not
going to use this DB connection directly. Instead, we will use the so-called ActiveRecord
to access the database.

We would like to explain a bit more about the tablePrefix property that we set in the
configuration. This tells the db connection that it should respect the fact we are using
tbl as the prefix to our database table names. In particular, if in a SQL statement there
is a token enclosed within double curly brackets (e.g. {{post}}, then the db connection
should translate it into a name with the table prefix (e.g. tbl post) before sending it to
DBMS for execution. This feature is especially useful if in future we need to modify the
table name prefix without touching our source code. For example, if we are developing a
generic content management system (CMS), we may exploit this feature so that when it
is being installed in a new environment, we can allow users to choose a table prefix they
like.

http://www.yiiframework.com/doc/guide/basics.application#application-component
http://yiiframework.com/doc/api/CDbConnection
http://www.yiiframework.com/doc/guide/database.ar

2.2 Scaffolding 11

Tip: If you want to use MySQL instead of SQLite to store data, you may cre-
ate a MySQL database named blog using the SQL statements in /wwwroot/yii/

demos/blog/protected/data/schema.mysql.sql. Then, modify the application
configuration as follows,

return array(

......

’components’=>array(

......

’db’=>array(

’connectionString’ => ’mysql:host=localhost;dbname=blog’,

’emulatePrepare’ => true,

’username’ => ’root’,

’password’ => ’’,

’charset’ => ’utf8’,

’tablePrefix’ => ’tbl ’,

),

),

......

);

2.2 Scaffolding

Create, read, update and delete (CRUD) are the four basic operations of data objects in an
application. Because the task of implementing the CRUD operations is so common when
developing Web applications, Yii provides a tool to automate this process (also known as
scaffolding). In this section, we will describe how to use the tool to implement CRUD for
posts and comments.

Open a command window and run the following commands:

% /wwwroot/yii/framework/yiic shell /wwwroot/blog/index.php

Yii Interactive Tool v1.1

Please type ’help’ for help. Type ’exit’ to quit.

>> model *

......

>> crud Post

......

>> crud Comment

......

>> exit

12 2. Initial Prototyping

Info: Some PHP installations may use a different php.ini file for command line
(CLI) PHP parser. As a result, when running the above yiic commands, you
may encounter errors like ”YiiBase::include(PDO.php): failed to open stream...”
or ”...could not find driver”. Please double check your CLI PHP configuration by
executing the following command:

php -r "phpinfo();"

The result of the above command will show which php.ini file is being used and
which extensions are loaded. If a wrong php.ini file is used, you may use the
following command to explicitly specify the correct php.ini to use:

php -c php.ini /wwwroot/yii/framework/yiic.php shell /wwwroot/blog/index.php

The commands above accomplish two tasks. First, the model command generates a model
class file for each table in the blog database. Second, the crud commands generate the
code needed by the CRUD operations for the Post and Comment models.

Tip: The command model * generates a model class for every table in the database.
Sometimes, we probably don’t want to do so (e.g. the database contains some irrel-
evant tables). In this case, we can create model classes one by one. For example,
to create the User model, we can use the command model User. The model com-
mand also has some more advanced usages. For more details, execute help model

command.

We can test the generated code by accessing the following URLs:

http://www.example.com/blog/index.php?r=post

http://www.example.com/blog/index.php?r=comment

Notice that the post and comment features implemented by the generated code are com-
pletely independent of each other. Also, when creating a new post or comment, we are
required to enter information, such as author id and create time, which in real applica-
tion should be set by the program. Don’t worry. We will fix these problems in the next
milestones. For now, we should be fairly satisfied as this prototype already contains most
features that we need to implement for the blog application.

To prepare for the next milestones, let’s take a closer look at the files generated by the
above commands. All the files are generated under /wwwroot/blog/protected. For conve-
nience, we group them into model files, controller files and view files:

http://www.yiiframework.com/doc/guide/basics.model
http://www.yiiframework.com/doc/guide/basics.model
http://www.yiiframework.com/doc/guide/basics.controller
http://www.yiiframework.com/doc/guide/basics.view

2.2 Scaffolding 13

• model files:

– models/User.php contains the User class that extends from CActiveRecord and
can be used to access the tbl user database table;

– models/Post.php contains the Post class that extends from CActiveRecord and
can be used to access the tbl post database table;

– models/Tag.php contains the Tag class that extends from CActiveRecord and
can be used to access the tbl tag database table;

– models/Comment.php contains the Comment class that extends from CActiveRe-
cord and can be used to access the tbl comment database table;

– models/Lookup.php contains the Lookup class that extends from CActiveRecord
and can be used to access the tbl lookup database table;

• controller file:

– controllers/PostController.php contains the PostController class which is the
controller in charge of all CRUD operations about posts;

– controllers/CommentController.php contains the CommentController class which
is the controller in charge of all CRUD operations about comments;

• view files:

– views/post/create.php is the view file that shows an HTML form to create a
new post;

– views/post/update.php is the view file that shows an HTML form to update an
existing post;

– views/post/view.php is the view file that displays the detailed information of a
post;

– views/post/index.php is the view file that displays a list of posts;

– views/post/admin.php is the view file that displays posts in a table with ad-
ministrative commands.

– views/post/ form.php is the partial view file embedded in views/post/create.

php and views/post/update.php. It displays the HTML form for collecting post
information.

– views/post/ view.php is the partial view file used by views/post/index.php. It
displays the brief view of a single post.

– a similar set of view files are also generated for comment.

http://yiiframework.com/doc/api/CActiveRecord
http://yiiframework.com/doc/api/CActiveRecord
http://yiiframework.com/doc/api/CActiveRecord
http://yiiframework.com/doc/api/CActiveRecord
http://yiiframework.com/doc/api/CActiveRecord
http://yiiframework.com/doc/api/CActiveRecord

14 2. Initial Prototyping

In order to understand better how the above files are used, we show in the following the
workflow that occurs in the blog application when displaying a list of posts:

1. The user requests the URL http://www.example.com/blog/index.php?r=posts;

2. The entry script is executed by the Web server which creates and initializes an
application instance to handle the request;

3. The application creates an instance of PostController and executes it;

4. The PostController instance executes the index action by calling its actionIndex()

method. Note that index is the default action if the user does not specify an action
to execute in the URL;

5. The actionIndex() method queries database to bring back the list of recent posts;

6. The actionIndex() method renders the index view with the post data.

2.3 Authenticating User

Our blog application needs to differentiate between the system owner and guest users.
Therefore, we need to implement the user authentication feature.

As you may have found that the skeleton application already provides user authentication
by checking if the username and password are both demo or admin. In this section, we
will modify the corresponding code so that the authentication is done against the User

database table.

User authentication is performed in a class implementing the IUserIdentity interface. The
skeleton application uses the UserIdentity class for this purpose. The class is stored in
the file /wwwroot/blog/protected/components/UserIdentity.php.

Tip: By convention, the name of a class file must be the same as the corresponding
class name suffixed with the extension .php. Following this convention, one can
refer to a class using a path alias. For example, we can refer to the UserIdentity

class with the alias application.components.UserIdentity. Many APIs in Yii
can recognize path aliases (e.g. Yii::createComponent()), and using path aliases
avoids the necessity of embedding absolute file paths in the code. The existence of
the latter often causes trouble when we deploy an application.

We modify the UserIdentity class as follows,

http://www.yiiframework.com/doc/guide/basics.entry
http://www.yiiframework.com/doc/guide/basics.application
http://www.yiiframework.com/doc/guide/topics.auth
http://yiiframework.com/doc/api/IUserIdentity
http://www.yiiframework.com/doc/guide/basics.namespace
http://yiiframework.com/doc/api/YiiBase#createComponent

2.3 Authenticating User 15

<?php

class UserIdentity extends CUserIdentity

{
private $ id;

public function authenticate()

{
$username=strtolower($this->username);

$user=User::model()->find(’LOWER(username)=?’,array($username));

if($user===null)

$this->errorCode=self::ERROR USERNAME INVALID;

else if(!$user->validatePassword($this->password))

$this->errorCode=self::ERROR PASSWORD INVALID;

else

{
$this-> id=$user->id;

$this->username=$user->username;

$this->errorCode=self::ERROR NONE;

}
return $this->errorCode==self::ERROR NONE;

}

public function getId()

{
return $this-> id;

}
}

In the authenticate() method, we use the User class to look for a row in the User table
whose username column is the same as the given username in a case-insensitive manner.
Remember that the User class was created using the yiic tool in the prior section. Because
the User class extends from CActiveRecord, we can exploit the ActiveRecord feature to
access the User table in an OOP fashion.

In order to check if the user has entered a valid password, we invoke the validatePassword

method of the User class. We need to modify the file /wwwroot/blog/protected/models/

User.php as follows. Note that instead of storing the plain password in the database, we
store the hash result of the password and a randomly generated salt key. When validating
the user-entered password, we should compare the hash results, instead.

class User extends CActiveRecord

{
......

public function validatePassword($password)

{
return $this->hashPassword($password,$this->salt)===$this->password;

http://yiiframework.com/doc/api/CActiveRecord
http://www.yiiframework.com/doc/guide/database.ar

16 2. Initial Prototyping

}

public function hashPassword($password,$salt)

{
return md5($salt.$password);

}
}

In the UserIdentity class, we also override the getId() method which returns the id value
of the user found in the User table. The parent implementation would return the username,
instead. Both the username and id properties will be stored in the user session and may
be accessed via Yii::app()->user from anywhere in our code.

Tip: In the UserIdentity class, we reference the class CUserIdentity without ex-
plicitly including the corresponding class file. This is because CUserIdentity is a
core class provided by the Yii framework. Yii will automatically include the class
file for any core class when it is referenced for the first time.

We also do the same with the User class. This is because the User class file is placed
under the directory /wwwroot/blog/protected/models which has been added to
the PHP include path according to the following lines found in the application
configuration:

return array(

......

’import’=>array(

’application.models.*’,

’application.components.*’,

),

......

);

The above configuration says that any class whose class file is located under either /
wwwroot/blog/protected/models or /wwwroot/blog/protected/components will
be automatically included when the class is referenced for the first time.

The UserIdentity class is mainly used by the LoginForm class to authenticate a user based
on the username and password input collected from the login page. The following code
fragment shows how UserIdentity is used:

$identity=new UserIdentity($username,$password);

$identity->authenticate();

switch($identity->errorCode)

{

http://yiiframework.com/doc/api/CUserIdentity
http://yiiframework.com/doc/api/CUserIdentity

2.4 Summary 17

case UserIdentity::ERROR NONE:

Yii::app()->user->login($identity);

break;

......

}

Info: People often get confused about identity and the user application component.
The former represents a way of performing authentication, while the latter is used
to represent the information related with the current user. An application can only
have one user component, but it can have one or several identity classes, depending
on what kind of authentication it supports. Once authenticated, an identity instance
may pass its state information to the user component so that they are globally
accessible via user.

To test the modified UserIdentity class, we can browse the URL http://www.example.

com/blog/index.php and try logging in with the username and password that we store in
the User table. If we use the database provided by the blog demo, we should be able to
login with username demo and password demo. Note that this blog system does not provide
the user management feature. As a result, a user cannot change his account or create a
new one through the Web interface. The user management feature may be considered as
a future enhancement to the blog application.

2.4 Summary

We have completed the milestone 1. Let’s summarize what we have done so far:

1. We identified the requirements to be fulfilled;

2. We installed the Yii framework;

3. We created a skeleton application;

4. We designed and created the blog database;

5. We modified the application configuration by adding the database connection;

6. We generated the code that implements the basic CRUD operations for both posts
and comments;

7. We modified the authentication method to check against the tbl user table.

http://www.yiiframework.com/demos/blog/

18 2. Initial Prototyping

For a new project, most of the time will be spent in step 1 and 4 for this first milestone.

Although the code generated by the yiic tool implements fully functional CRUD oper-
ations for a database table, it often needs to be modified in practical applications. For
this reason, in the next two milestone, our job is to customize the generated CRUD code
about posts and comments so that it reaches our initial requirements.

In general, we first modify the model class file by adding appropriate validation rules and
declaring relational objects. We then modify the controller action and view code for each
individual CRUD operation.

http://www.yiiframework.com/doc/guide/basics.model
http://www.yiiframework.com/doc/guide/form.model#declaring-validation-rules
http://www.yiiframework.com/doc/guide/database.arr#declaring-relationship
http://www.yiiframework.com/doc/guide/basics.controller
http://www.yiiframework.com/doc/guide/basics.view

Chapter 3

Post Management

3.1 Customizing Post Model

The Post model class generated by the yiic tool mainly needs to be modified in two places:

• the rules() method: specifies the validation rules for the model attributes;

• the relations() method: specifies the related objects;

Info: A model consists of a list of attributes, each associated with a column in the
corresponding database table. Attributes can be declared explicitly as class member
variables or implicitly without any declaration.

3.1.1 Customizing rules() Method

We first specify the validation rules which ensure the attribute values entered by users
are correct before they are saved to the database. For example, the status attribute of
Post should be an integer 1, 2 or 3. The yiic tool also generates validation rules for each
model. However, these rules are based on the table column information and may not be
appropriate.

Based on the requirement analysis, we modify the rules() method as follows:

public function rules()

{
return array(

array(’title, content, status’, ’required’),

array(’title’, ’length’, ’max’=>128),

array(’status’, ’in’, ’range’=>array(1,2,3)),

array(’tags’, ’match’, ’pattern’=>’/^[\w\s,]+$/’,
’message’=>’Tags can only contain word characters.’),

http://www.yiiframework.com/doc/guide/basics.model

20 3. Post Management

array(’tags’, ’normalizeTags’),

);

}

In the above, we specify that the title, content and status attributes are required; the
length of title should not exceed 128; the status attribute value should be 1 (draft), 2
(published) or 3 (archived); and the tags attribute should only contain word characters
and commas. In addition, we use normalizeTags to normalize the user-entered tags so that
the tags are unique and properly separated with commas.

The validators such as required, length, in and match are all built-in validators provided
by Yii. The normalizeTags validator is a method-based validator that we need to define
in the Post class. For more information about how to specify validation rules, please refer
to the Guide.

public function normalizeTags($attribute,$params)

{
$this->tags=Tag::array2string(array unique(Tag::string2array($this->tags)));

}

The rules declared in this method are executed one by one when we call the validate() or
save() method of the model instance.

Note: It is very important to remember that attributes appearing in rules() must
be those to be entered by end users. Other attributes, such as id and create time

in the Post model, which are set by our code or database, should not be in rules().
For more details, please refer to Securing Attribute Assignments.

After making these changes, we can visit the post creation page again to verify that the
new validation rules are taking effect.

3.1.2 Customizing relations() Method

Lastly we customize the relations() method to specify the related objects of a post. By
declaring these related objects in relations(), we can exploit the powerful Relational
ActiveRecord (RAR) feature to access the related object information of a post, such as
its author and comments, without the need to write complex SQL JOIN statements.

We customize the relations() method as follows:

http://www.yiiframework.com/doc/guide/form.model#declaring-validation-rules
http://yiiframework.com/doc/api/CModel#validate
http://yiiframework.com/doc/api/CActiveRecord#save
http://www.yiiframework.com/doc/blog/post.admin#securing-attribute-assignments
http://www.yiiframework.com/doc/guide/database.arr
http://www.yiiframework.com/doc/guide/database.arr

3.1 Customizing Post Model 21

public function relations()

{
return array(

’author’ => array(self::BELONGS TO, ’User’, ’author id’),

’comments’ => array(self::HAS MANY, ’Comment’, ’post id’,

’condition’=>’comments.status=’.Comment::STATUS APPROVED,

’order’=>’comments.create time DESC’),

’commentCount’ => array(self::STAT, ’Comment’, ’post id’,

’condition’=>’status=’.Comment::STATUS APPROVED),

);

}

The above relations state that

• A post belongs to an author whose class is User and the relationship is established
based on the author id attribute value of the post;

• A post has many comments whose class is Comment and the relationship is established
based on the post id attribute value of the comments. These comments should be
sorted according to their creation time and the comments must be approved.

• The commentCount relation is a bit special as it returns back an aggregation result
which is about how many comments the post has.

With the above relation declaration, we can easily access the author and comments of a
post like the following:

$author=$post->author;

echo $author->username;

$comments=$post->comments;

foreach($comments as $comment)

echo $comment->content;

For more details about how to declare and use relations, please refer to the Guide.

3.1.3 Representing Status in Text

Because the status of a post is stored as an integer in the database, we need to provide a
textual representation so that it is more intuitive when being displayed to end users. In a
large system, the similar requirement is very common.

http://www.yiiframework.com/doc/guide/database.arr

22 3. Post Management

As a generic solution, we use the tbl lookup table to store the mapping between integer
values and textual representations that are needed by other data objects. We modify the
Lookup model class as follows to more easily access the textual data in the table,

class Lookup extends CActiveRecord

{
private static $ items=array();

public static function items($type)

{
if(!isset(self::$ items[$type]))

self::loadItems($type);

return self::$ items[$type];

}

public static function item($type,$code)

{
if(!isset(self::$ items[$type]))

self::loadItems($type);

return isset(self::$ items[$type][$code]) ? self::$ items[$type][$code] : false;

}

private static function loadItems($type)

{
self::$ items[$type]=array();

$models=self::model()->findAll(array(

’condition’=>’type=:type’,

’params’=>array(’:type’=>$type),

’order’=>’position’,

));

foreach($models as $model)

self::$ items[$type][$model->code]=$model->name;

}
}

Our new code mainly provides two static methods: Lookup::items() and Lookup::item().
The former returns a list of strings belonging to the specified data type, while the latter
returns a particular string for the given data type and data value.

Our blog database is pre-populated with two lookup types: PostStatus and CommentStatus.
The former refers to the possible post statuses, while the latter the comment statuses.

In order to make our code easier to read, we also declare a set of constants to represent
the status integer values. We should use these constants through our code when referring
to the corresponding status values.

3.2 Creating and Updating Posts 23

class Post extends CActiveRecord

{
const STATUS DRAFT=0;

const STATUS PUBLISHED=1;

const STATUS ARCHIVED=2;

......

}

Therefore, we can call Lookup::items(’PostStatus’) to get the list of possible post statuses
(text strings indexed by the corresponding integer values), and call Lookup::item(’PostStatus’,
Post::STATUS PUBLISHED) to get the string representation of the published status.

3.2 Creating and Updating Posts

With the Post model ready, we need to fine-tune the actions and views for the controller
PostController. In this section, we first customize the access control of CRUD operations;
we then modify the code implementing the create and update operations.

3.2.1 Customizing Access Control

The first thing we want to do is to customize the access control because the code generated
by yiic does not fit our needs.

We modify the accessRules() method in the file /wwwroot/blog/protected/controllers/

PostController.php as follows,

public function accessRules()

{
return array(

array(’allow’, // allow all users to perform ’list’ and ’show’ actions

’actions’=>array(’index’, ’view’),

’users’=>array(’*’),

),

array(’allow’, // allow authenticated users to perform any action

’users’=>array(’@’),

),

array(’deny’, // deny all users

’users’=>array(’*’),

),

);

}

The above rules state that all users can access the index and view actions, and authenti-
cated users can access any actions, including the admin action. The user should be denied

http://www.yiiframework.com/doc/guide/topics.auth#access-control-filter

24 3. Post Management

access in any other scenario. Note that these rules are evaluated in the order they are
listed here. The first rule matching the current context makes the access decision. For
example, if the current user is the system owner who tries to visit the post creation page,
the second rule will match and it will give the access to the user.

3.2.2 Customizing create and update Operations

The create and update operations are very similar. They both need to display an HTML
form to collect user inputs, validate them, and save them into database. The main differ-
ence is that the update operation will pre-populate the form with the existing post data
found in the database. For this reason, the yiic tool generates a partial view /wwwroot/

blog/protected/views/post/ form.php that is embedded in both the create and update

views to render the needed HTML form.

We first change the form.php file so that the HTML form only collects the inputs we
want: title, content, tags and status. We use plain text fields to collect inputs for the
first three attributes, and a dropdown list to collect input for status. The dropdown list
options are the text displays of the possible post statuses:

<?php echo CHtml::activeDropDownList($post,’status’,Lookup::items(’PostStatus’)); ?>

In the above, we call Lookup::items(’PostStatus’) to bring back the list of post statuses.

We then modify the Post class so that it can automatically set some attributes (e.g. create

time, author id) before a post is saved to the database. We override the beforeSave()

method as follows,

protected function beforeSave()

{
if(parent::beforeSave())

{
if($this->isNewRecord)

{
$this->create time=$this->update time=time();

$this->author id=Yii::app()->user->id;

}
else

$this->update time=time();

return true;

}
else

return false;

}

3.3 Displaying Posts 25

When we save a post, we want to update the tbl tag table to reflect the change of tag
frequencies. We can do this work in the afterSave() method, which is automatically
invoked by Yii after a post is successfully saved into the database.

protected function afterSave()

{
parent::afterSave();

Tag::model()->updateFrequency($this-> oldTags, $this->tags);

}

private $ oldTags;

protected function afterFind()

{
parent::afterFind();

$this-> oldTags=$this->tags;

}

In the implementation, because we want to detect if the user changes the tags in case he is
updating an existing post, we need to know what the old tags are. For this reason, we also
write the afterFind() method to keep the old tags in the variable oldTags. The method
afterFind() is invoked automatically by Yii when an AR record is populated with the
data from database.

We are not going to give details of the Tag::updateFrequency() method here. Interested
readers may refer to the file /wwwroot/yii/demos/blog/protected/models/Tag.php.

3.3 Displaying Posts

In our blog application, a post may be displayed among a list of posts or by itself. The
former is implemented as the index operation while the latter the view operation. In this
section, we customize both operations to fulfill our initial requirements.

3.3.1 Customizing view Operation

The view operation is implemented by the actionView() method in PostController. Its
display is generated by the view view with the view file /wwwroot/blog/protected/views/

post/view.php.

Below is the relevant code implementing the view operation in PostController:

public function actionView()

{

26 3. Post Management

$this->render(’view’,array(

$post=$this->loadModel();

$this->render(’view’,array(

’model’=>$post,

));

));

}

private $ model;

public function loadModel()

{
if($this-> model===null)

{
if(isset($ GET[’id’]))

{
if(Yii::app()->user->isGuest)

$condition=’status=’.Post::STATUS PUBLISHED

.’ OR status=’.POST::STATUS ARCHIVED;

else

$condition=’’;

$this-> model=Post::model()->findbyPk($ GET[’id’], $condition);

}
if($this-> model===null)

throw new CHttpException(404,’The requested page does not exist.’);

}
return $this-> model;

}

Our change mainly lies in the loadModel() method. In this method, we query the Post

table according to the id GET parameter. If the post is not found or if it is not published
or archived (when the user is a guest), we will throw a 404 HTTP error. Otherwise the
post object is returned to actionView() which in turn passes the post object to the view
script for further display.

Tip: Yii captures HTTP exceptions (instances of CHttpException) and displays
them in either predefined templates or customized error views. The skeleton appli-
cation generated by yiic already contains a customized error view in /wwwroot/

blog/protected/views/site/error.php. We can modify this file if we want to
further customize the error display.

The change in the view script is mainly about ajdusting the formatting and styles of the
post display. We will not go into details here. Interested readers may refer to /wwwroot/

blog/protected/views/post/view.php.

http://yiiframework.com/doc/api/CHttpException

3.3 Displaying Posts 27

3.3.2 Customizing index Operation

Like the view operation, we customize the index operation in two places: the actionIndex()

method in PostController and the view file /wwwroot/blog/protected/views/post/index.

php. We mainly need to add the support for displaying a list of posts that are associated
with a specified tag.

Below is the modified actionIndex() method in PostController:

public function actionIndex()

{
$criteria=new CDbCriteria(array(

’condition’=>’status=’.Post::STATUS PUBLISHED,

’order’=>’update time DESC’,

’with’=>’commentCount’,

));

if(isset($ GET[’tag’]))

$criteria->addSearchCondition(’tags’,$ GET[’tag’]);

$dataProvider=new CActiveDataProvider(’Post’, array(

’pagination’=>array(

’pageSize’=>Yii::app()->params[’postsPerPage’],

),

’criteria’=>$criteria,

));

$this->render(’index’,array(

’dataProvider’=>$dataProvider,

));

}

In the above, we first create a query criteria for retrieving post list. The criteria states
that only published posts should be returned and they should be sorted according to their
update time in descending order. Because when displaying a post in the list, we want to
show how many comments the post has received, in the criteria we also specify to bring
back commentCount, which if you remember, is a relation declared in Post::relations().

In case when a user wants to see posts with a specific tag, we would add a search condition
to the criteria to look for the specified tag.

Using the query criteria, we create a data provider, which mainly serves for three purposes.
First, it does pagination of the data when too many results may be returned. Here
we customize the pagination by setting the page size to be an application parameter
postsPerPage. Second, it does sorting according to the user request. And finally, it feeds
the paginated and sorted data to widgets or view code for presentation.

28 3. Post Management

After we finish with actionIndex(), we modify the index view as follows. Our change is
mainly about adding the h1 header when the user specifies to display posts with a tag.

<?php if(!empty($ GET[’tag’])): ?>

<h1>Posts Tagged with <i><?php echo CHtml::encode($ GET[’tag’]); ?></i></h1>

<?php endif; ?>

<?php $this->widget(’zii.widgets.CListView’, array(

’dataProvider’=>$dataProvider,

’itemView’=>’ view’,

’template’=>"{items}\n{pager}",
)); ?>

Note that in the above, we use [CListView] to display the post list. This widget requires a
partial view to display the detail of each individual post. Here we specify the partial view
to be view, which means the file /wwwroot/blog/protected/views/post/ view.php. In this
view script, we can acccess the post instance being displayed via a local variable named
$data.

3.4 Managing Posts

Managing posts mainly refers to listing posts in an administrative view that allows us to
see posts with all statuses, updating them and deleting them. They are accomplished by
the admin operation and the delete operation, respectively. The code generated by yiic

does not need much modification. Below we mainly explain how these two operations are
implemented.

3.4.1 Listing Posts in Tabular View

The admin operation shows posts with all statuses in a tabular view. The view supports
sorting and pagination. The following is the actionAdmin() method in PostController:

public function actionAdmin()

{
$dataProvider=new CActiveDataProvider(’Post’, array(

’sort’=>array(

’defaultOrder’=>’status, update time DESC’,

),

));

$this->render(’admin’,array(

’dataProvider’=>$dataProvider,

));

}

http://yiiframework.com/doc/api/[CListView

3.4 Managing Posts 29

The above code is very similar to that in actionIndex(). The main difference is in the
query criteria. Here, we do not specify any particular query criteria since we want to see
all posts. We do customize the sort property of the data provider so that by default, the
posts are shown in the order of their statuses and update time.

Below is the code for the admin view:

<h1>Manage Posts</h1>

<?php $this->widget(’zii.widgets.grid.CGridView’, array(

’dataProvider’=>$dataProvider,

’columns’=>array(

array(

’name’=>’title’,

’type’=>’raw’,

’value’=>’CHtml::link(CHtml::encode($data->title), $data->url)’

),

array(

’name’=>’status’,

’value’=>’Lookup::item("PostStatus",$data->status)’,

),

’create time:datetime’,

’update time:datetime’,

array(

’class’=>’CButtonColumn’,

),

),

)); ?>

We use [CGridView] to display the posts. It allows us to sort by a column and paginate
through the posts if there are too many to be displayed in a single page. Our change is
mainly about how to display each column. For example, for the title column, we specify
that it should be displayed as a hyperlink that points to the detailed view of the post.

Tip: When displaying text, we call CHtml::encode() to encode HTML entities in
it. This prevents from cross-site scripting attack.

3.4.2 Deleting Posts

In the admin data grid, there is a delete button in each row. Clicking on the button should
delete the corresponding post. Internally, this triggers the delete action implemented as
follows:

http://yiiframework.com/doc/api/[CGridView
http://yiiframework.com/doc/api/CHtml#encode
http://www.yiiframework.com/doc/guide/topics.security

30 3. Post Management

public function actionDelete()

{
if(Yii::app()->request->isPostRequest)

{
// we only allow deletion via POST request

$this->loadModel()->delete();

if(!isset($ POST[’ajax’]))

$this->redirect(array(’index’));

}
else

throw new CHttpException(400,’Invalid request. Please do not repeat this request again.’);

}

The above code is the one generated by the yiic tool without any change. We would
like to explain a little bit more about the checking on $ POST[’ajax’]. The [CGridView]
widget has a very nice feature that its sorting, pagination and deletion operations are all
done in AJAX mode by default. That means, the whole page does not get reloaded if any
of the above operations is performed. However, it is also possible that the widget runs in
non-AJAX mode (by setting its ajaxUpdate property to be false or disabling JavaScript on
the client side). It is necessary for the delete action to differentiate these two scenarios: if
the delete request is made via AJAX, we should not redirect the user browser; otherwise,
we should.

Deleting a post should also cause the deletion of all comments for that post. In addition,
we should also update the tbl tag table regarding the tags for the deleted post. Both of
these tasks can be achieved by writing an afterDelete method in the Post model class as
follows,

protected function afterDelete()

{
parent::afterDelete();

Comment::model()->deleteAll(’post id=’.$this->id);

Tag::model()->updateFrequency($this->tags, ’’);

}

The above code is very straightforward: it first deletes all those comments whose post id

is the same as the ID of the deleted post; it then updates the tbl tag table for the tags

of the deleted post.

http://yiiframework.com/doc/api/[CGridView

3.4 Managing Posts 31

Tip: We have to explicitly delete all comments for the deleted post here because
SQLite does not really support foreign key constraints. In a DBMS that supports
this constraint (such as MySQL, PostgreSQL), the foreign key constraint can be set
up such that the DBMS automatically deletes the related comments if the post is
deleted. In that case, we no longer this explicit deletion call in our code.

32 3. Post Management

Chapter 4

Comment Management

4.1 Customizing Comment Model

For the Comment model, we mainly need to customize the rules() and attributeLabels()

methods. The attributeLabels() method returns a mapping between attribute names
and attribute labels. We do not need to touch relations() since the code generated by
the yiic tool is good enough.

4.1.1 Customizing rules() Method

We first customize the validation rules generated by the yiic tool. The following rules are
used for comments:

public function rules()

{
return array(

array(’content, author, email’, ’required’),

array(’author, email, url’, ’length’, ’max’=>128),

array(’email’,’email’),

array(’url’,’url’),

);

}

In the above, we specify that the author, email and content attributes are required; the
length of author, email and url cannot exceed 128; the email attribute must be a valid
email address; and the url attribute must be a valid URL.

4.1.2 Customizing attributeLabels() Method

We then customize the attributeLabels() method to declare the label display for each
model attribute. This method returns an array consisting of name-label pairs. When we
call CHtml::activeLabel() to display an attribute label.

http://yiiframework.com/doc/api/CHtml#activeLabel

34 4. Comment Management

public function attributeLabels()

{
return array(

’id’ => ’Id’,

’content’ => ’Comment’,

’status’ => ’Status’,

’create time’ => ’Create Time’,

’author’ => ’Name’,

’email’ => ’Email’,

’url’ => ’Website’,

’post id’ => ’Post’,

);

}

Tip: If the label for an attribute is not declared in attributeLabels(), an algo-
rithm will be used to generate an appropriate label. For example, a label Verify
Code will be generated for attributes verify code or verifyCode.

4.1.3 Customizing Saving Process

Because we want to record the creation time of a comment, we override the beforeSave()

method of Comment like we do for the Post model:

protected function beforeSave()

{
if(parent::beforeSave())

{
if($this->isNewRecord)

$this->create time=time();

return true;

}
else

return false;

}

4.2 Creating and Displaying Comments

In this section, we implement the comment display and creation features.

4.2.1 Displaying Comments

Instead of displaying and creating comments on individual pages, we use the post detail
page (generated by the view action of PostController). Below the post content display,

4.2 Creating and Displaying Comments 35

we display first a list of comments belonging to that post and then a comment creation
form.

In order to display comments on the post detail page, we modify the view script /wwwroot/
blog/protected/views/post/view.php as follows,

<div id="comments">

<?php if($model->commentCount>=1): ?>

<h3>

<?php echo $model->commentCount . ’comment(s)’; ?>

</h3>

<?php $this->renderPartial(’ comments’,array(

’post’=>$model,

’comments’=>$model->comments,

)); ?>

<?php endif; ?>

</div>

In the above, we call renderPartial() to render a partial view named comments to display
the list of comments belonging to the current post. Note that in the view we use the
expression $model->comments to retrieve the comments for the post. This is valid because
we have declared a comments relation in the Post class. Evaluating this expression would
trigger an implicit JOIN database query to bring back the proper comments. This feature
is known as lazy relational query.

The partial view comments is not very interesting. It mainly goes through every comment
and displays the detail of it. Interested readers may refer to /wwwroot/yii/demos/blog/

protected/post/ comments.php.

4.2.2 Creating Comments

To handle comment creation, we first modify the actionView() method of PostController

as follows,

public function actionView()

{
$post=$this->loadModel();

$comment=$this->newComment($post);

$this->render(’view’,array(

’model’=>$post,

’comment’=>$comment,

));

http://www.yiiframework.com/doc/guide/database.arr

36 4. Comment Management

}

protected function newComment($post)

{
$comment=new Comment;

if(isset($ POST[’Comment’]))

{
$comment->attributes=$ POST[’Comment’];

if($post->addComment($comment))

{
if($comment->status==Comment::STATUS PENDING)

Yii::app()->user->setFlash(’commentSubmitted’,’Thank you...’);

$this->refresh();

}
}
return $comment;

}

In the above, we call the newComment() method before we render view. In the newComment()

method, we generate a Comment instance and check if the comment form is submitted. If so,
we try to add the comment for the post by calling $post->addComment($comment). If it goes
through, we refresh the post detail page. In case the comment needs to be approved, we will
show a flash message to indicate this decision. A flash message is usually a confirmation
message displayed to end users. If the user clicks on the refresh button of his browser, the
message will disappear.

We also need to modify /wwwroot/blog/protected/views/post/view.php furthermore,

......

<div id="comments">

......

<h3>Leave a Comment</h3>

<?php if(Yii::app()->user->hasFlash(’commentSubmitted’)): ?>

<div class="success">

<?php echo Yii::app()->user->getFlash(’commentSubmitted’); ?>

</div>

<?php else: ?>

<?php $this->renderPartial(’/comment/ form’,array(

’model’=>$comment,

)); ?>

<?php endif; ?>

</div><!-- comments -->

4.3 Managing Comments 37

In the above code, we display the flash message if it is available. If not, we display
the comment input form by rendering the partial view /wwwroot/blog/protected/views/

comment/ form.php.

4.3 Managing Comments

Comment management includes updating, deleting and approving comments. These op-
erations are implemented as actions in the CommentController class.

4.3.1 Updating and Deleting Comments

The code generated by yiic for updating and deleting comments remains largely un-
changed.

4.3.2 Approving Comments

When comments are newly created, they are in pending approval status and need to be
approved in order to be visible to guest users. Approving a comment is mainly about
changing the status column of the comment.

We create an actionApprove() method in CommentController as follows,

public function actionApprove()

{
if(Yii::app()->request->isPostRequest)

{
$comment=$this->loadModel();

$comment->approve();

$this->redirect(array(’index’));

}
else

throw new CHttpException(400,’Invalid request...’);

}

In the above, when the approve action is invoked via a POST request, we call the approve()

method defined in the Comment model to change the status. We then redirect the user
browser to the page displaying the post that this comment belongs to.

We also modify the actionIndex() method of Comment to show all comments. We would
like to see comments pending approved to show up first.

public function actionIndex()

38 4. Comment Management

{
$dataProvider=new CActiveDataProvider(’Comment’, array(

’criteria’=>array(

’with’=>’post’,

’order’=>’t.status, t.create time DESC’,

),

));

$this->render(’index’,array(

’dataProvider’=>$dataProvider,

));

}

Notice that in the above code, because both tbl post and tbl comment have columns status
and create time, we need to disambiguate the corresponding column reference by prefixing
them with table alias names. As described in the guide, the alias for the primary table in
a relational query is always t. Therefore, we are prefixing t to the status and create time

columns in the above code.

Like the post index view, the index view for CommentController uses [CListView] to display
the comment list which in turn uses the partial view /wwwroot/blog/protected/views/

comment/ view.php to display the detail of each individual comment. We will not go into
details here. Interested readers may refer to the corresponding file in the blog demo
/wwwroot/yii/demos/blog/protected/views/comment/ view.php.

http://www.yiiframework.com/doc/guide/database.arr#disambiguating-column-names
http://yiiframework.com/doc/api/[CListView

Chapter 5

Portlets

5.1 Customizing Page Layout

Features like ”the most recent comments”, ”tag cloud” are better to be implemented in
portlets. A portlet is a pluggable user interface component that renders a fragment of
HTML code. In this section, we describe how to set up the portlet architecture for our
blog application.

Before we go into details about developing portlets, we first need to adjust our page layout
so that the portlets can be placed in a side bar.

A page layout determines how to share common sections (e.g. header, footer) among
different pages, and how to embed contents that are specific for different pages. In Yii,
a page layout is represented as a view under the protected/views/layouts folder. When
we call the render() method in a controller, the rendering result will be automatically
embedded into this layout view before it is displayed to end users. The default layout
view is named as main, which means the /wwwroot/blog/protected/views/layouts/main.

php file in our blog application.

We could directly modify the main layout to add a side bar. However, doing so would
make some irrelevant pages, such as about, contact pages, to have a side bar, which is not
always desirable. For this reason, we need different layouts for different pages.

We thus create two different layouts: column1 and column2. The former displays the page
in a single column, while the latter displays two columns in the page, one of which is the
side bar. We will use column2 layout for the post and comment pages, and column1 for
the rest of the pages. Because both column1 and column2 still share the same header and
footer sections, we let them to share the main layout.

Based on the above description, we create the column1 layout as follows,

<?php $this->beginContent(’/layouts/main’); ?>

<div class="container">

http://en.wikipedia.org/wiki/Portlet

40 5. Portlets

<div id="content">

<?php echo $content; ?>

</div><!-- content -->

</div>

<?php $this->endContent(); ?>

and the column2 layout as follows,

<?php $this->beginContent(’/layouts/main’); ?>

<div class="container">

<div class="span-18">

<div id="content">

<?php echo $content; ?>

</div><!-- content -->

</div>

<div class="span-6 last">

<div id="sidebar">

portlets to be placed here

</div><!-- sidebar -->

</div>

</div>

<?php $this->endContent(); ?>

As we can see, both column1 and column2 are enclosed in a pair of beginContent and
endContent calls. They essentially use the specified view /layouts/main to decorate the
enclosed content. In all these layout views, the variable $content refers to the dynamic
content to be embedded into the layout.

Besides customizing the layout view file, we also need to adjust the CSS file /wwwroot/

blog/css/main.css so that the overall appearance would look like what we see in the blog
demo. We will not go into details here.

Info: The skeleton application generated by the yiic tool uses the BluePrint CSS
framework. It provides a nice font reset and a robust grid system. For more details
on how to use this framework, please refer to its documentation.

After creating the new layouts, we need to set the layout property of controllers to make
use of them. So far we have three controllers: SiteController, PostController and
CommentController. We set SiteController to use column1 as the default layout, while
the rest two of the controllers use column2, for example,

class PostController extends Controller

http://www.yiiframework.com/demos/blog/
http://www.yiiframework.com/demos/blog/
http://www.blueprintcss.org/

5.2 Creating User Menu Portlet 41

{
public $layout=’column2’;

......

}

Tip: If some view of the controller does not use the same layout as declared
by the layout property, it may customize it in the view by a simple assignment
$this->layout=’newlayout’;.

5.2 Creating User Menu Portlet

Based on the requirements analysis, we need three different portlets: the ”user menu”
portlet, the ”tag cloud” portlet and the ”recent comments” portlet. We will develop these
portlets by extending the [CPortlet] widget provided by Yii.

In this section, we will develop our first concrete portlet - the user menu portlet which
displays a list of menu items that are only available to authenticated users. The menu
contains four items:

• Approve Comments: a hyperlink that leads to a list of comments pending approval;

• Create New Post: a hyperlink that leads to the post creation page;

• Manage Posts: a hyperlink that leads to the post management page;

• Logout: a link button that would log out the current user.

5.2.1 Creating UserMenu Class

We create the UserMenu class to represent the logic part of the user menu portlet. The
class is saved in the file /wwwroot/blog/protected/components/UserMenu.php which has the
following content:

Yii::import(’zii.widgets.CPortlet’);

class UserMenu extends CPortlet

{
public function init()

{
$this->title=CHtml::encode(Yii::app()->user->name);

parent::init();

http://yiiframework.com/doc/api/[CPortlet

42 5. Portlets

}

protected function renderContent()

{
$this->render(’userMenu’);

}
}

The UserMenu class extends from the CPortlet class that we created previously. It overrides
both the init() method and the renderContent() method of CPortlet. The former sets
the portlet title to be the name of the current user; the latter generates the portlet body
content by rendering a view named userMenu.

Tip: Notice that we have to explicitly include the CPortlet class by calling Yii::

import() before we refer to it the first time. This is because CPortlet is part of the
zii project – the official extension library for Yii. For performance consideration,
classes in this project are not listed as core classes. Therefore, we have to import it
before we use it the first time.

5.2.2 Creating userMenu View

Next, we create the userMenu view which is saved in the file /wwwroot/blog/protected/

components/views/userMenu.php:

<?php echo CHtml::link(’Create New Post’,array(’post/create’)); ?>

<?php echo CHtml::link(’Manage Posts’,array(’post/admin’)); ?>

<?php echo CHtml::link(’Approve Comments’,array(’comment/index’))

. ’ (’ . Comment::model()->pendingCommentCount . ’)’; ?>

<?php echo CHtml::link(’Logout’,array(’site/logout’)); ?>

Info: By default, view files for a widget should be placed under the views sub-
directory of the directory containing the widget class file. The file name must be
the same as the view name.

5.2.3 Using UserMenu Portlet

It is time for us to make use of our newly completed UserMenu portlet. We modify the
layout view file /wwwroot/blog/protected/views/layouts/column2.php as follows:

5.3 Creating Tag Cloud Portlet 43

......

<div id="sidebar">

<?php if(!Yii::app()->user->isGuest) $this->widget(’UserMenu’); ?>

</div>

......

In the above, we call the widget() method to generate and execute an instance of the
UserMenu class. Because the portlet should only be displayed to authenticated users, we
only call widget() when the isGuest property of the current user is false (meaning the
user is authenticated).

5.2.4 Testing UserMenu Portlet

Let’s test what we have so far.

1. Open a browser window and enter the URL http://www.example.com/blog/index.

php. Verify that there is nothing displayed in the side bar section of the page.

2. Click on the Login hyperlink and fill out the login form to login. If successful, verify
that the UserMenu portlet appears in the side bar and the portlet has the username
as its title.

3. Click on the ’Logout’ hyperlink in the UserMenu portlet. Verify that the logout action
is successful and the UserMenu portlet disappears.

5.2.5 Summary

What we have created is a portlet that is highly reusable. We can easily reuse it in a
different project with little or no modification. Moreover, the design of this portlet follows
closely the philosophy that logic and presentation should be separated. While we did not
point this out in the previous sections, such practice is used nearly everywhere in a typical
Yii application.

5.3 Creating Tag Cloud Portlet

Tag cloud displays a list of post tags with visual decorations hinting the popularity of each
individual tag.

5.3.1 Creating TagCloud Class

We create the TagCloud class in the file /wwwroot/blog/protected/components/TagCloud.

php. The file has the following content:

http://en.wikipedia.org/wiki/Tag_cloud

44 5. Portlets

Yii::import(’zii.widgets.CPortlet’);

class TagCloud extends CPortlet

{
public $title=’Tags’;

public $maxTags=20;

protected function renderContent()

{
$tags=Tag::model()->findTagWeights($this->maxTags);

foreach($tags as $tag=>$weight)

{
$link=CHtml::link(CHtml::encode($tag), array(’post/index’,’tag’=>$tag));

echo CHtml::tag(’span’, array(

’class’=>’tag’,

’style’=>"font-size:{$weight}pt",
), $link)."\n";

}
}

}

Unlike the UserMenu portlet, the TagCloud portlet does not use a view. Instead, its presen-
tation is done in the renderContent() method. This is because the presentation does not
contain much HTML tags.

We display each tag as a hyperlink to the post index page with the corresponding tag
parameter. The font size of each tag link is adjusted according to their relative weight
among other tags. If a tag has higher frequency value than the other, it will have a bigger
font size.

5.3.2 Using TagCloud Portlet

Usage of the TagCloud portlet is very simple. We modify the layout file /wwwroot/blog/

protected/views/layouts/main.php as follows,

......

<div id="sidebar">

<?php if(!Yii::app()->user->isGuest) $this->widget(’UserMenu’); ?>

<?php $this->widget(’TagCloud’, array(

’maxTags’=>Yii::app()->params[’tagCloudCount’],

)); ?>

</div>

5.4 Creating Recent Comments Portlet 45

......

5.4 Creating Recent Comments Portlet

In this section, we create the last portlet that displays a list of comments recently pub-
lished.

5.4.1 Creating RecentComments Class

We create the RecentComments class in the file /wwwroot/blog/protected/components/RecentComments.
php. The file has the following content:

Yii::import(’zii.widgets.CPortlet’);

class RecentComments extends CPortlet

{
public $title=’Recent Comments’;

public $maxComments=10;

public function getRecentComments()

{
return Comment::model()->findRecentComments($this->maxComments);

}

protected function renderContent()

{
$this->render(’recentComments’);

}
}

In the above we invoke the findRecentComments method which is defined in the Comment

class as follows,

class Comment extends CActiveRecord

{
......

public function findRecentComments($limit=10)

{
return $this->with(’post’)->findAll(array(

’condition’=>’t.status=’.self::STATUS APPROVED,

’order’=>’t.create time DESC’,

’limit’=>$limit,

));

}
}

46 5. Portlets

5.4.2 Creating recentComments View

The recentComments view is saved in the file /wwwroot/blog/protected/components/views/

recentComments.php. It simply displays every comment returned by the RecentComments:

:getRecentComments() method.

5.4.3 Using RecentComments Portlet

We modify the layout file /wwwroot/blog/protected/views/layouts/main.php to embed
this last portlet,

......

<div id="sidebar">

<?php if(!Yii::app()->user->isGuest) $this->widget(’UserMenu’); ?>

<?php $this->widget(’TagCloud’, array(

’maxTags’=>Yii::app()->params[’tagCloudCount’],

)); ?>

<?php $this->widget(’RecentComments’, array(

’maxComments’=>Yii::app()->params[’recentCommentCount’],

)); ?>

</div>

......

Chapter 6

Final Work

6.1 Beautifying URLs

The URLs linking various pages of our blog application currently look ugly. For example,
the URL for the page showing a post looks like the following:

/index.php?r=post/show&id=1

In this section, we describe how to beautify these URLs and make them SEO-friendly.
Our goal is to be able to use the following URLs in the application:

1. /index.php/posts/yii: leads to the page showing a list of posts with tag yii;

2. /index.php/post/2/A+Test+Post: leads to the page showing the detail of the post
with ID 2 whose title is A Test Post;

3. /index.php/post/update/1: leads to the page that allows updating the post with ID
1.

Note that in the second URL format, we include the post title in the URL. This is mainly
to make the URL SEO friendly. It is said that search engines may also respect the words
found in a URL when it is being indexed.

To achieve our goal, we modify the application configuration as follows,

return array(

......

’components’=>array(

......

’urlManager’=>array(

’urlFormat’=>’path’,

’rules’=>array(

http://www.yiiframework.com/doc/guide/basics.application#application-configuration

48 6. Final Work

’post/<id:\d+>/<title:.*?>’=>’post/view’,
’posts/<tag:.*?>’=>’post/index’,

),

),

),

);

In the above, we configure the urlManager component by setting its urlFormat property
to be path and adding a set of rules.

The rules are used by urlManager to parse and create the URLs in the desired format.
For example, the first rule says that if a URL /index.php/posts/yii is requested, the
urlManager component should be responsible to dispatch the request to the route post/

index and generate a tag GET parameter with the value yii. On the other hand, when
creating a URL with the route post/index and parameter tag, the urlManager component
will also use this rule to generate the desired URL /index.php/posts/yii. For this reason,
we say that urlManager is a two-way URL manager.

The urlManager component can further beautify our URLs, such as hiding index.php in
the URLs, appending suffix like .html to the URLs. We can obtain these features easily
by configuring various properties of urlManager in the application configuration. For more
details, please refer to the Guide.

6.2 Logging Errors

A production Web application often needs sophisticated logging for various events. In our
blog application, we would like to log the errors occurring when it is being used. Such
errors could be programming mistakes or users’ misuse of the system. Logging these errors
will help us to improve the blog application.

We enable the error logging by modifying the application configuration as follows,

return array(

’preload’=>array(’log’),

......

’components’=>array(

’log’=>array(

’class’=>’CLogRouter’,

’routes’=>array(

array(

’class’=>’CFileLogRoute’,

’levels’=>’error, warning’,

http://www.yiiframework.com/doc/guide/topics.url
http://www.yiiframework.com/doc/guide/basics.controller#route
http://www.yiiframework.com/doc/guide/topics.url
http://www.yiiframework.com/doc/guide/basics.application#application-configuration

6.3 Final Tune-up and Deployment 49

),

),

),

......

),

);

With the above configuration, if an error or warning occurs, detailed information will be
logged and saved in a file located under the directory /wwwroot/blog/protected/runtime.

The log component offers more advanced features, such as sending log messages to a list
of email addresses, displaying log messages in JavaScript console window, etc. For more
details, please refer to the Guide.

6.3 Final Tune-up and Deployment

We are close to finish our blog application. Before deployment, we would like to do some
tune-ups.

6.3.1 Changing Home Page

We change to use the post list page as the home page. We modify the application config-
uration as follows,

return array(

......

’defaultController’=>’post’,

......

);

Tip: Because PostController already declares list to be its default action, when
we access the home page of the application, we will see the result generated by the
list action of the post controller.

6.3.2 Enabling Schema Caching

Because ActiveRecord relies on the metadata about tables to determine the column infor-
mation, it takes time to read the metadata and analyze it. This may not be a problem
during development stage, but for an application running in production mode, it is a total
waste of time if the database schema does not change. Therefore, we should enable the
schema caching by modifying the application configuration as follows,

http://www.yiiframework.com/doc/guide/topics.logging
http://www.yiiframework.com/doc/guide/basics.application#application-configuration
http://www.yiiframework.com/doc/guide/basics.application#application-configuration

50 6. Final Work

return array(

......

’components’=>array(

......

’cache’=>array(

’class’=>’CDbCache’,

),

’db’=>array(

’class’=>’system.db.CDbConnection’,

’connectionString’=>’sqlite:/wwwroot/blog/protected/data/blog.db’,

’schemaCachingDuration’=>3600,

),

),

);

In the above, we first add a cache component which uses a default SQLite database as the
caching storage. If our server is equipped with other caching extensions, such as APC,
we could change to use them as well. We also modify the db component by setting its
schemaCachingDuration property to be 3600, which means the parsed database schema
data can remain valid in cache for 3600 seconds.

6.3.3 Disabling Debugging Mode

We modify the entry script file /wwwroot/blog/index.php by removing the line defining
the constant YII DEBUG. This constant is useful during development stage because it allows
Yii to display more debugging information when an error occurs. However, when the
application is running in production mode, displaying debugging information is not a
good idea because it may contain sensitive information such as where the script file is
located, and the content in the file, etc.

6.3.4 Deploying the Application

The final deployment process manly involves copying the directory /wwwroot/blog to the
target directory. The following checklist shows every needed step:

1. Install Yii in the target place if it is not available;

2. Copy the entire directory /wwwroot/blog to the target place;

3. Edit the entry script file index.php by pointing the $yii variable to the new Yii
bootstrap file;

4. Edit the file protected/yiic.php by setting the $yiic variable to be the new Yii
yiic.php file;

http://yiiframework.com/doc/api/CDbConnection#schemaCachingDuration

6.4 Future Enhancements 51

5. Change the permission of the directories assets and protected/runtime so that they
are writable by the Web server process.

6.4 Future Enhancements

6.4.1 Using a Theme

Without writing any code, our blog application is already themeable. To use a theme,
we mainly need to develop the theme by writing customized view files in the theme. For
example, to use a theme named classic that uses a different page layout, we would create
a layout view file /wwwroot/blog/themes/classic/views/layouts/main.php. We also need
to change the application configuration to indicate our choice of the classic theme:

return array(

......

’theme’=>’classic’,

......

);

6.4.2 Internationalization

We may also internationalize our blog application so that its pages can be displayed in
different languages. This mainly involves efforts in two aspects.

First, we may create view files in different languages. For example, for the list page
of PostController, we can create a view file /wwwroot/blog/protected/views/post/zh cn/

list.php. When the application is configured to use simplified Chinese (the language code
is zh cn), Yii will automatically use this new view file instead of the original one.

Second, we may create message translations for those messages generated by code. The
message translations should be saved as files under the directory /wwwroot/blog/protected/

messages. We also need to modify the code where we use text strings by enclosing them
in the method call Yii::t().

For more details about internationalization, please refer to the Guide.

6.4.3 Improving Performance with Cache

While the Yii framework itself is very efficient, it is not necessarily true that an application
written in Yii efficient. There are several places in our blog application that we can improve
the performance. For example, the tag clould portlet could be one of the performance
bottlenecks because it involves complex database query and PHP logic.

http://www.yiiframework.com/doc/guide/topics.theming
http://www.yiiframework.com/doc/guide/topics.i18n
http://www.yiiframework.com/performance/

52 6. Final Work

We can make use of the sophisticated caching feature provided by Yii to improve the
performance. One of the most useful components in Yii is COutputCache, which caches a
fragment of page display so that the underlying code generating the fragment does not need
to be executed for every request. For example, in the layout file /wwwroot/blog/protected/

views/layouts/main.php, we can enclose the tag cloud portlet with COutputCache:

<?php if($this->beginCache(’tagCloud’, array(’duration’=>3600))) { ?>

<?php $this->widget(’TagCloud’, array(

’maxTags’=>Yii::app()->params[’tagCloudCount’],

)); ?>

<?php $this->endCache(); } ?>

With the above code, the tag cloud display will be served from cache instead of being
generated on-the-fly for every request. The cached content will remain valid in cache for
3600 seconds.

6.4.4 Adding New Features

Our blog application only has very basic functionalities. To become a complete blog
system, more features are needed, for example, calendar portlet, email notifications, post
categorization, archived post portlet, and so on. We will leave the implementation of these
features to interested readers.

http://www.yiiframework.com/doc/guide/caching.overview
http://yiiframework.com/doc/api/COutputCache
http://yiiframework.com/doc/api/COutputCache

	Contents
	License
	Getting Started
	Building a Blog System using Yii
	Testdriving with Yii
	Installing Yii
	Creating Skeleton Application
	Application Workflow

	Requirements Analysis
	Overall Design

	Initial Prototyping
	Setting Up Database
	Creating Database
	Establishing Database Connection

	Scaffolding
	Authenticating User
	Summary

	Post Management
	Customizing Post Model
	Customizing rules() Method
	Customizing relations() Method
	Representing Status in Text

	Creating and Updating Posts
	Customizing Access Control
	Customizing create and update Operations

	Displaying Posts
	Customizing view Operation
	Customizing index Operation

	Managing Posts
	Listing Posts in Tabular View
	Deleting Posts

	Comment Management
	Customizing Comment Model
	Customizing rules() Method
	Customizing attributeLabels() Method
	Customizing Saving Process

	Creating and Displaying Comments
	Displaying Comments
	Creating Comments

	Managing Comments
	Updating and Deleting Comments
	Approving Comments

	Portlets
	Customizing Page Layout
	Creating User Menu Portlet
	Creating UserMenu Class
	Creating userMenu View
	Using UserMenu Portlet
	Testing UserMenu Portlet
	Summary

	Creating Tag Cloud Portlet
	Creating TagCloud Class
	Using TagCloud Portlet

	Creating Recent Comments Portlet
	Creating RecentComments Class
	Creating recentComments View
	Using RecentComments Portlet

	Final Work
	Beautifying URLs
	Logging Errors
	Final Tune-up and Deployment
	Changing Home Page
	Enabling Schema Caching
	Disabling Debugging Mode
	Deploying the Application

	Future Enhancements
	Using a Theme
	Internationalization
	Improving Performance with Cache
	Adding New Features

