
First steps with the Yii framework extension 'mongocms'

Author: Joe Blocher
Copyright: 2011 myticket it-solutions gmbh
License: New BSD License

Frontpage after installation:

Lession 1: Create the slideshow

Login as admin and add images to the preinstalled content 'slideshow'.

Manage -> Slideshow

Click the edit icon of "My first slideshow".

Add images as attachments, add a description and save.

Go to the frontpage and the slideshow should appear.

Lession 2: Add articles, news and messages to the frontpage

Manage -> Frontpage content

Create new item

1. Fill out the form, choose 'Frontpage article ' as Route,

- add tags

- add external links

- add attachments

 The allowed extensions of attachment files can be configured as property of the MongoCmsModule

2. Take a look at the settings for this page

- add metatags 'keywords' and 'description' to the html-header of the page

- enable the display of author, modified, add to favorites ...

3. Permissions

Enable the checkbox only if you have a very special page.

If you enable at least one checkbox you have to set all rights here.

Add more content to the Frontpage by repeating these steps.

Use 'Weight' to order the articles.

Create Frontpage news :

Repeat these steps, but choose "Frontpage news" as Route to publish news at the frontpage.

Choose "Frontpage message" for important messages at the frontpage.

When viewing a single page you can:

- select similar articles by tags

- print page

- add to your favorites list

- edit directly

Lession 3: Add static pages to the main menu

Manage -> Page -> Create new item

Select Menu: Content

The route will be set to 'main'.

Don't extend the route - so this will be a main item in the menu.

Add subitems to the 'Help' item by extending the route.

4. Howto/FAQ

What is the idea behind building menus?

1. Every page is stored with a "docroute" (can be empty)

 This is the route in the url to view the content through the ContentController.actionPage

So you can create content with routes like:

- help

- help/install

- help/install/linux

- help/gettingstarted

- help/about

...

To view the pages call:

index.php/content/page/help/

index.php/content/page/help/install

...

If multipe pages have the same docroutes, all will be listed as articles (with teaser ...).

When a contenttype defines 'static routes', the docroute can only be set by selecting from the dropdown.

The contenttype 'Content' and 'Dashcontent' have only static route, which can be in

config/mongocms/docroutes_content.php and docroutes_dashcontent.php.

Add more docroutes in this configfiles and implement the new routes in the views.

Creating a menu (item) means to register a 'treenode' of the docroutes (='docrouteid') .

So you can create a new menu after creating content or the other way round.

If there is a content 'behind' the registered docroute, the title of this content will be used as menucaption and it will

be displayed as root item in the mainmenu.

How to create different menus (sidebar ...)?

Take a look at config/mongocms/createmenuitems_main.php

This is the file where the mainmenu is created.

The function Menu::model()->addItems($menuItems);

per default adds all registered docrouteid's to the main menu.

But you can assign the additional parameter '$docrouteId' as string or as an array.

So only these docrouteid's where added to the main menu. If your views support different menus, you can assign the

docrouteid's for your needs.

How to customize mongocms?

Take a look at the comments of the public properties of MongoCmsModule.php.

The comment of the property 'theme' will explain how to customize all views and configuration files.

How to build my own contenttypes?

Take a look a the submodule 'slideshow'.

Custom contenttypes should be always created as submodules to separate custom code and core code in the

directories.

- The submodule should extend 'MongoCmsModule'

- The CRUD controller should extend 'AdminController'

- The model should extend 'Page'

Note:

The models 'User', 'Roles', 'Content', 'Dashcontent' are all different contenttypes with the basic 'Page' as parent.

Take a look at the customized view files of these contenttypes too.

